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ABSTRACT 

Soybeans were chosen for lunar and planetary missions, where soybeans will be 

supplied in bulk or grown locally, due to their nutritive value and ability to produce oil and 

protein for further food applications. However, soybeans must be processed into foods prior 

to consumption. Radiation that soybeans would be exposed to during bulk storage prior to 

and during a Mars mission may influence their germination and functional properties. The 

influence of radiation includes the affect of surface pasteurization to ensure the astronauts' 

safety from food-borne illnesses (HACCP, CCP), and the effect of the amount of radiation 

the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidant, 

free radical formation, and oxidation-induced changes in the soybean will influence the 

nutritional value, texture, color, and aroma of soyfoods. The objective of this study was to 

determine the influence of pasteurization surface radiation on whole soybeans using electron 

beam radiation. The influence of 0, 1, 5, and 10 kGy on microbial load, germination rate, 

ease of processing, and quality of soymilk and tofu were determined. Surface radiation of 

whole dry soybeans using electron beam from 1-10 kGy did provide microbial safety for the 

astronauts. However, the lower dose levels had surviving yeasts and molds. These doses 

caused oxidative changes that resulted in soymilk and tofu with rancid aromas. GC-MS of 

the aroma compounds using SPME Headspace confirmed the presence of lipid oxidation 

compounds. Soybean germination ability was reduced as radiation dosage increased. While 

lower doses may reduce these problems, the ability to insure microbial safety of bulk 

soybeans will be lost. Counter measures could include vacuum packaging, nitrogen flushing, 

adding antioxidants, and radiating under freezing conditions. Doses below 1 kGy need to be 
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investigated further to determine the influence of the radiation encountered during Maas 

missions. 
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CHAPTER 1 

INTRODUCTION 

Food safety and security have always been of concern and it is even more so after 

September 11, 2001. The Office of Homeland Security has encouraged the United State 

Department of Agriculture to increase food protection against bioterrorism (Rawson 2003; 

Nabhan 2003). Safety of foodborne illness microorganisms and pathogens are highly 

priorities for both Homeland Security and NASA. Soybeans were chosen by NASA for lunar 

and planetary missions due to their nutritive value and their ability to produce oil and protein 

for further food applications. However, soybeans must be processed into foods prior to 

astronauts' consumption. Long-term storage of soybeans during Mars missions may result in 

degradation of soybeans through radiation induced oxidation reactions and deterioration of 

composition over storage time. Oxidative stress can influence the antioxidant level in the 

food, its shelf life, and the quantity and quality of food produced. Surface radiation of whole 

dry soybeans using electron beam or gamma rays at 10 or 30 kGy provided microbial safe 

food for the astronauts, but caused oxidative changes that resulted in unacceptable quality of 

soymilk and tofu with rancid aromas, darker color, lower tofu yields, more solid waste, paste- 

like okara, and loss of seed germination ability compared to the non-irradiated seeds and 

their products, which could be a problem if they are to be grown on Mars (Wilson and others 

2005). Therefore, lower doses were suggested in reducing these problems. This study, funded 

by Wilson's NASA Directors Grant, is to determine the following hypotheses: Hypothesis l: 

Radiation as a Critical Control Point (CCP) and storage conditions, prior to and during transit 

to Mars, interact to decrease the amount of natural antioxidants in the soybean, induce lipid 
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oxidation and decrease the yield and quality of soybeans. Hypothesis 2: Radiation at 1, 5, 10 

kGy will alter the germination rate of the soybeans. Goa -irradiation at similar dose levels 

had shown increase in soymilk and tofu yield, and had minimal effect on their quality (Byun 

and Kang 1995). The objective of this research is to establish if the Hazard Analysis Critical 

Control Point (HACCP) CCP step of irradiating whole soybeans at 1, 5, 10 kGy using 

electron beam affects microbial load, antioxidant potential, seed germination, yield and 

quality of soymilk and tofu. 
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CHAPTER 2 

LITERATURE REVIEW 

SOYBEANS AND COMPOSITION 

Soybean, Glycine max (L.), belongs to the family Leguminosae. It originated in 

northern China and it was cultivated as early as 5000 years ago (Wang 1997). Soybeans had 

been transformed into various types of soyfoods including soymilk, tofu, soy sprouts, soy 

paste and soy sauce by the Chinese. It was later brought to Japan, Korea, and other Far East 

countries about 1,100 years ago, and then to Europe and North America in the 18th century 

(Liu 2004a). In 1954, the United States became the world leader soybean production 

producing 40% of total production, followed by Brazil (24%), Argentina (18%), China (8%) 

and India (3%) (Liu 2004a; Soyatech, Inc. 2004). 

Soybean is a good rotational crop due to its nitrogen fixing ability and adaptability to 

wide range of soils and climate. It produces more edible protein per acre of land than other 

crops due to its high protein content (approximately 40% protein, 20% oil, 35% 

carbohydrates and 5% ash on dry basis). It has the highest protein content comparing to 

cereal and other legume species, and the second-highest oil content among all food legumes. 

Soybeans are widely used as human food, animal feed and industrial material. The majority 

of soybeans are crushed into oil for food uses and defatted meal for animal feed uses. Only a 

small fraction is processed for direct human consumption including various soyfoods and 

soy-based ingredients [soy flour, soy concentrate, soy isolate, soy nuts, soy isoflavone (germ) 

and more] (Soyatech, Inc. 2004). 
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Soybean oil contains more than 99% triglycerides with high proportion of unsaturated 

fatty acids (approximately 85%). It is a good source of two essential fatty acids that cannot 

be synthesized in human body: linoleic and linolenic acids, where the latter is also an omega-

3 fatty acid (Liu 2004a). Hence, it has been shown that mono- and polyunsaturation in 

soybean oil is beneficial to human health due to its cholesterol lowering effects (Martin and 

others 1986; Chow 1992). Table 1 shows the average and ranges of the fatty acid profile in 

soybean oil including oil from the new low linoleic soybean cultivar (~1 °/® C 18:3). Minor 

components present also include phospholipids, unsaponifiable materials (such as 

tocopherols, phytosterols, and hydrocarbons), free fatty acids and trace metals. 

Table 1. Fatty acid composition of soybean oil extracted. 
Fatty Acid Profile Range Average 

Palmitic acid (C 16:0) 4-23 % 11 

Stearic acid (C 18 :0) 3 -3 0% 4% 

Oleic acid (C 18:1) 25-86% 24% 

Linoleic acid (C18:2) 25-60% 53% 

Linolenic acid (C 18 :3) 1-15 % 7% 

Source: Liu 2001; Hammond and Glatz 1988. 

The major storage proteins in soybeans are globulins with two major proteins: 

glycinin, an 11 S fraction, and ~3-conglycinin, a 7S fraction. Both fractions account for 

approximately 70% of the total storage protein in soybeans (Nielsen 1985; Nishizawa and 

others 1994). Glycinin, the major seed storage protein in most varieties (>50%), is composed 

of one acidic and one basic polypeptide connected by disulphide linkages while ~3-
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conglycinin is composed of cx, a' and (3-subunits but lacks disulphide linkages. Both of these 

protein subunits play important role in the quality of soyfoods. 

Both water-soluble and fat-soluble vitamins are found in soybeans. The water-soluble 

vitamins include thiamin, riboflavin, niacin, pantothenic acid and folic acid while the fat- 

soluble vitamins include vitamin A and E (no vitamins D and K present). Water-soluble 

vitamins are lost during processing of soybeans such as tofu making. Ascorbic acid (Vitamin 

C) and Vitamin A, present as ~3-carotene, in mature soybeans is essentially negligible, but a 

measurable amount is present in immature and germinated beans (Bates and Matthews 1975). 

Vitamin E, the most sensitive fat-soluble vitamin, is present in four isomers: a-, ~3-, 'y , S- 

tocopherols (Figure 1) (Knapp and Tappel 1961, Jiang and others 2001). Guzman and 

Murphy (1986) found that the concentration of different tocopherol isomers varies depending 

on the soybean cultivar (data reported as range of different soybean variety in Table 2). Even 

though 30-47% of vitamin E is loss during processing of soybeans into tofu, tofu is still 

considered a greater source of vitamin E than whole soybeans on a dry basis (Pryde 1980; 

Guzman and Murphy 1986). 

~.'] 1}

T '~ =, 
~~ ~ ~~ ~ ~c~~ ~ ~ p~hena 

a-tocopherol 
,6-tocopherol 
'y tocopherol 
S-tocopherol 

R1=R2=CH3
Rl=CH3, R2=H 
R1=H, R2=CH3
Rl =R2=H 

~~~ 

Figure 1. Chemical structure of vitamin E (tocopherols) in soybeans 
(Source: Jiang and others 2001). 
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Table 2. ~Titamin E content in soybeans 
Component Range (µg/g~ 
a-tocopherol 10.9-28.4 

/3-tocopherol less than 3% of total 

'y tocopherol 150-190 

8-tocopherol 24.6-72.5 
Source: modified after Pryde 1980; Guzman and Murphy 1986. 

Other major constituents o f interest in soybeans include soy lecithin (0. S -1.5 % of 

soybean seed), isoflavones (0.1-0.4% dry weight of soybeans), soy saponins, phytosterols 

(approximately 0.3 -0.6mg/g of soybeans), phytate (1-1.7% dry basis), trypsin inhibitors, 

lectins or hemagglutinins and lunasin, a natural bioactive peptide in soybeans (Liu 2004a; 

Lolas 1976; Wang and Wixon 1999). 

HEALTH BENEFITS OF SOY 

Soy protein is low in sulfur-containing amino acids, but it does contain all 11 of the 

essential amino acids required for human or animal nutrition, including isoleucine, leucine, 

lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, and 

histidine (Zarkadas and others 1993). It is rated the highest protein digestibility-corrected 

amino acid score (PDCAAS) possible among plant proteins (PDCAAS=0.91) (Liu 2004a). 

Due to its comparable protein quality to cow's and human milk protein (PDCAAS=1.21), 

soymilk is an alternative choice for lactose-intolerant patients and good substitution for 

animal source proteins (Liu 2004b; Quak and Tan 1998; Schaafsma 2000). 

Soy protein is also cholesterolemic. It is highly effective in lowering total cholesterol 

as well as low-density lipoprotein (LDL) by increasing the high-density lipoprotein (HDL) 
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(Anderson and others 1995). This has been shown in various studies as well as meta-analysis, 

which confirmed that soy protein lowers blood cholesterol concentrations in both animals 

and human (Anderson and others 1995; Hamilton and others 1976; Sirtori and others 1997). 

Therefore, the U.S. Food and Drug Administration (FDA) approved a health claim, for 

qualified soy products, that diets low in saturated fat and cholesterol that included 25g of soy 

protein a day may reduce the risk of heart disease (FDA 1999). Other active components 

including amino acids, isoflavones, saponins, phytic acid, trypsin inhibitors, fiber, and 

globulins may also contribute to the cholesterol lowering effect. Studies also have shown that 

soy protein plays significant role in lowering risk of cardiovascular disease, preventing 

hypertriglyceridemia, hyperinsulinemia, hyperglycemia and impaired renal function as well 

as decreasing urinary calcium excretion (Watkins and other 1985; Erdman 2000; Spence and 

others 2002; Stephenson and others 2002; Moriyama and others 2004). 

Soy lecithin, the main by-product of soybean oil refining, is an important source of 

choline, which regulates signaling functions and structural integrity of cells. Lecithin helps to 

lower cardiovascular disease risk, prevent abnormal fetal development, reduce some forms of 

male infertility, promote healthy liver function, improve in memory and cognition, reduce 

adverse reactions to various drugs, as well as decrease risk of coronary heart disease and 

stroke by reducing plasma homocysteine levels (Zeisel and Blusztain 1994; Wald and others 

1998; Liu 2004a). Studies also showed that consumption of soyfoods helps in preventing and 

treating chronic diseases, and reducing incidence of breast, colon, and prostate cancers, heart 

disease, osteoporosis, and possibly menopausal symptoms (Anderson and others 1995; 

Kennedy 1995; Barnes 1998; Setchell and Cassidy1999). 
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CONSUMPTION OF SOYFOODS 

Soybeans have been consumed as food for thousands of years. They are traditionally 

consumed in a variety of soyfoods such as tofu, soy sauce, miso, soy sprouts and vegetable 

soybeans (Liu 2004b). Production of soybeans continues to grow to meet the market demand, 

and they have reached 57% of the total world oilseed production. The United States 

contributed to approximately 40% of the world soybean production in 2004 (Soy StatSTM

2005). Nowadays, soybeans have been transformed into various edible soy products for both 

human consumptions and animal feed, which are categorized as soy oil products, soy protein 

products, modern soyfoods, soy-enriched foods and soy dietary supplements and 

nutraceuticals by Liu (2004a) (Table 3). 

Table 3. Variety of soyfoods in the current market. 
Category Product Examples 
Traditional soyfoods Non-fermented soyfoods 

• soymilk, tofu, soymilk film (yuba), okara, soybean 
sprouts, vegetable soybeans (edemame) 

Fermented soyfoods 
• Fermented soy paste, soy sauce, Japanese Natto, tempeh, 

sufu, soy nuggets 
Soy oil products Salad and cooking oils, shortening, margarine, mayonaise, 

salad dressings, confectionery coatings. 
Soy protein products Soy flour, soy protein concentrate, soy protein isolate, 

textured soy proteins 
Modern soyfoods Soy ice-cream, soy yogurts, soy cheese, soy burgers, 

meatless meatballs, imitation bacon bites, soy butter, soy 
puddings, tofu spreads and dressings 

Soy-enriched foods Soy bread, soy pastas, soy cereal, soy snacks, soy-enriched 
bakery products (muffins, pancakes, cookies, etc.) 

Functional soy ingredients/ 
dietary supplements 

Soy lecithin, oligosaccharides, isoflavones, tocopherols, 
phytosterols, tr`Ypsin inhibitors 

Source: Liu 2004b. 
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SOYMILK AND TOFU PRODUCTION 

Soymilk, a water extract from soybeans, and tofu, soybean curd, is believed to have 

originated in China and is made through the traditional thousand-year-old home-scale 

method (traditional Chinese method) (Liu 2004b). Different methods have been used in 

soymilk and tofu manufacturing to improve the flavor (reduce beaniness) of the soymilk., 

The traditional Chinese method, and newer methods that reduce the beany flavor of soy such 

as Japanese, Cornell, Illinois, Rapid Hydration HydroThermal Cooking (RHHTC), cold-

grind under vacuum (ProSoya), deodorization, antioxidant addition and alkali treatment 

methods had been developed (Wilson 1995; Prawiradj aj a 2003). The traditional Japanese 

method of soymilk and tofu making (Figure 2) varies from the traditional Chinese method in 

that the soymilk is separated from the okara before heating in the traditional Chinese method. 

The heating step after grinding in the traditional Japanese method is critical to inactivate 

enzymes such as lipoxygenase in raw soybeans, thus producing less beany soymilk. Soymilk 

is then further processed into tofu by coagulating the soy proteins using coagulants such as 

calcium sulfate, glucono-delta-lactone (GDL) or magnesium chloride (Watanabe and others 

1964; Liu 2004b). 
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Dry Whole Soybeans 

Soaking the beans in cold water for 8-12 hours 
at room temperature 

Water 

Okara 

Grinding 

Heating 

Coagulant 

Filtering 

,Soymilk 

Heating to coagulating temperature 

Coagulation of the soymilk 

Pressing 

Tofu 

Whey 

Figure 2. Traditional Japanese Method for Soymilk and Tofu Manufacturing 

SOYBEANS AS ASTRONAUTS' FOOD 

Since the first space mission of the National Aeronautics and Space Administration 

(NASA), food for astronauts has been studied and improved to provide better nutrition, 

increase the variety of foods, and make them easier to consume. Duration of space missions 
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range from one or two weeks to years if permanent bases are to be set up on Mars (Karel 

1989). It is increasingly important as the missions became longer that the astronauts should 

consume safe, palatable, healthy, and high quality food. Hence, research and development of 

space food and processing methods have been actively conducted to improve the safety, 

shelf-life and variety of space food (Nanz and others 1967; Klicka and Smith 1982; Barta and 

others 1999; Zasypkin and Lee 1999; Perchonok and others 2001; Toerne and others 2001; 

Wilson and others 2005). Implementation of the Hazard Analysis and Critical Control Point 

(HACCP) system for the space food program started with the Gemini program (1965 to 

1966) (Perchonok and Bourland 2002). Application of radiation to space food started with 

the Apollo program (1968-1972), where the first irradiated food was consumed by the Apollo 

astronauts. It has been suggested that a HACCP, CCP step be used to ensure the food safety 

of astronauts (Bourland and others 2000; Perchonok and Bourland 2002; Wilson and others 

2005). Foods can be pasteurized or sterilized through exposure to ionizing radiation. 

Increasing the variety of irradiated food is continuously being studied. The use of irradiation 

at 10-5 OkGy to sterilize frozen, packaged meats, including beefsteaks, was approved by the 

Food and Drug Administration (FDA) for use in NASA's space flight program in 1995 (FDA 

1995; Crawford and Ruff 1996). 

As space missions get longer, it has been suggested that crops be grown in the 

permanent base for (1) substitution of prepackaged food with ingredients processed from 

harvested crops in the future as well as (2) their contribution to bioregeneration of oxygen 

and carbon dioxide (Barta and Henninger 1994). Due to soybeans' high nutrient content, it 

has been chosen as one of the crops food for the Lunar and Mars missions. It can be 

processed into soy flour, tofu, tempeh, soymilk, whey, okara and soybean oil in space. 
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However, more efforts in design and development of food-processing procedures and 

equipment for conversion of crops into bulk ingredients, such as the STOW (Soymilk, Tofu, 

Okara, Whey) processor prototype for soybeans, need to be investigated to fully utilize the 

crops (Perchonok and Bourland 2002; Wilson and others 2004b). 

FOOD IRRADIATION AS A STEP IN THE HAZARD ANALYSIS CRITICAL 

CONTROL POINT (HACCP) SYSTEM 

Application of ionizing radiation in food to ensure quality and shelf life has existed 

since the late 1800s according to Josephson (1983) and Diehl (1990b). The history of 

radiation started with discovery of X-rays by Roentgen in 1895 followed by observation of 

radiation effects on microorganisms by Pracronotti and Procelli in 1898. Extensive research 

on the influences of ionizing radiation on different foods and the development of accelerator 

machines followed these findings. In 195 8, the United States Food Additives Amendment to 

the FDCA act defined food irradiation as an 'additive'. Laws and regulations on food 

irradiation were established to monitor applications of ionizing radiation on foods (Molins 

2001). In 1980, the Joint Food and Agriculture Organization (FAO)/International Atomic 

Energy Agency (IA.EA)/ World Health Organization (WHO) Expert Committee on Food 

Irradiation (JECFI) declared that "irradiation of any food up to an average dose of lOkGy 

pose no toxicological hazards to humans, no special nutritional or microbiological problems 

in foods" (Anonymous 1981; Ahmad 1995; Crawford and Ruff 1996; Molins 2001). This 

safe and acceptable dose level has been shown to be effective in various applications 

including delay or accelerate ripening, delay aging, enhance shelf-life, control microbial load, 

destroy insect infestation, eliminate unwanted sprouting, and sometimes improve flavor and 
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texture of foods without imparting any radioactivity to the food. Due to the effectiveness of 

radiation in food prevention and controlling microbial contamination, the WJ~IO declared that 

radiation is "a powerful tool against preventable food losses and foodborne illnesses" 

(Ahmad 1995; Crawford and Ruff 1996). 

In 1997, due to the concern on the wholesomeness of food irradiated at 10 kGy and 

above, the joint Study Group on High Dose Food Irradiation reviewed data on high-dose 

food irradiation (10-100 kGy) and concluded that food treated with doses greater than 10 

kGy can be considered safe and nutritionally adequate when produced under established 

Good Manufacturing Practices (GMPs). This is due to the fact that radiation at the levels will 

not lead to changes in the food composition and nutrient loss that would cause adverse effect 

on human health but would greatly reduce any potential microbiological risk to consumers 

(WHO 1999). Application of radiation to foods at three different dose ranges is shown in 

Table 4: low dose, medium dose and high dose radiation levels (Alunad 1995; Crawford and 

Ruff 1996). 

Cobalt-60 or caesium-137 and machine sources of electrons up to l OMeV and X-rays 

from electrons up to 5 MeV are the only radiation sources that are accepted as a Codex 

Alimentarius General Standard for food irradiation (WHO 1999). Table 5 shows the 

comparison of these three different sources of radiation (Deeley 2004). 

Different types of radiation (Gamma, X-ray, E-beam, etc) may have different effects 

on the food depending on the dosage as well as the food matrix (Tables 4 and 5). Ganuna 

rays are obtained from the decay of 60Co, while electrons are generated by high energy 

electron beam accelerators. Both differ greatly in their ability to penetrate matter: gamma 

rays exhibit much higher penetration than electron beams (Cleland and Pageau 1985; Blank 
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Table 4. Levels of radiation subjected to food applications. 
Level of 
radiation 

Radiation Applications 
dosage 

Examples 

Low dose 
application 
(disinfestation/ 
delay in 
ripening) 

Medium dose 
application 
(pasteurization) 

High dose 
application 
(sterilization) 

< 1 kGy 

i-l0 kGy 

to-so kGy 

Inhibit sprouting in potatoes, 
onions, etc. 

Allow long-term storage 
Cause disinfestation by 

insects, etc. in pulses, 
cereal grains, dried fruits 

Destroy parasites in foods, 
e.g. nematods 
(Trichinella) in pork 

Delay other physiological 
processes 

Reduce or eliminate spoilage 
bacteria, moulds and 
yeast, improve keeping 
properties 

Reduce pathogenic 
organisms such as 
Salmonella and Listeria. 

Sterilization for commercial 
purposes 

Eliminate some disease-
causing viruses 

Sterilize herbs, spices and 
other ingredients, foods 
for immuno-
compromised hospital 
patients and for 
astronauts during space 
flight. 

Decontaminate certain food 
additives and ingredients 

Potatoes, onions, garlic, 
root ginger, bananas, 
mangoes, and certain 
other non-citrus 
fruit, cereals and 
pulses, dehydrated 
vegetables, dried fish 
and meat, fresh pork 

Fresh fish, strawberries, 
grapes, dehydrated 
vegetables, fresh or 
frozen seafood, raw 
or frozen poultry and 
meat 

Industrial products and 
medical supplies, 
etc. 

Meat, poultry, seafood 
and other food 
prepared for 
sterilized hospital 
diets, spices, 
enzymes 
preparations, natural 
gum 

* *Source: modified after 1~►hmad 1995; Crawford and Ruff 1996. 



www.manaraa.com

15 

and Comgan 1995) (Table 5). However, electron beam irradiation was shown to be more 

efficient in decontamination or disinfestation of food products because the electron beam can 

be directed at the product or microorganism while the gamma sources emit radiation in all 

directions (Diehl 1990a; Chelack and other 1991; Blank and Corrigan 1995). X-rays have 

similar penetration ability as gamma and was first patented in the US to kill the nematod 

Trichinella spiralis in meat. Therefore, application of radiation on food may vary on types 

and dose level depending on its effectiveness and primary intentions (disinfestations, 

pasteurization or sterilization). 

Table S. Comparison of the primary functional parameters that differentiate radiation 
technologies. 

Gamma X-ray E-beam 
On/off technology No Yes Yes 
Penetration depth 50-80cm 50-80cm 5.8cm 
Dose rate kGy/h kGy/s kGy/s 
Dose homogeneity High High Low 
Source: Deeley 2004. 

EFFECTS OF IRRADIATION ON FOOD SAFETY AND QUALITY 

The use of food irradiation is most frequently focused on (i) microbiological safety of 

irradiated foods; (ii) nutrient loss during irradiation; (iii) free radical formation and radiolytic 

by-products of irradiation; and (iv) product quality-taste, texture, odor and other sensory 

attributes, (v) consumer acceptance (Bruhn and Noell 1987; Crawford and Ruff 1996; Nayga 

and others 2005). Hence, influences of radiation on food components that may affect the 

safety and overall quality of food have been widely studied. 
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According to Dickson (2001), radiation sensitivity of various organic compounds is 

proportional to their molecular weight. On the basis of this assumption, it has been estimated 

that a dose of 0.1 kGy would damage 0.005 % of the amino acids, 0.14% of the enzymes, and 

2.8% of the DNA within a given cell (Pollard 1966; Dickson 2001). Studies have shown that 

irradiation is a safe and effective alternative to insure food safety other than heat and 

chemical treatments. Radiation inactivates microorganisms, thus improves the shelf-life of 

various products including meat products, herds, fruits and others (Byun and other 2002b; 

Kamat and others 2003; Palekar and others 2004; Wen H-W 2006). Radiation cause genetic 

material damage in microorganisms by generating radicals from water molecules which then 

react with the nucleic acids causing lesions in the DNA. However, sensitivity of the 

microorganisms to radiation is highly dependent on the irradiation condition and the food 

matrix, especially the availability of water in the systems (Dickson 2001). 

Even though no major compositional changes and nutrient loss in food due to 

radiation has been known, studies have shown that ionizing radiation does alter the quality of 

food by affecting the major food components. Ionizing radiation can cause chemical changes 

in food components in both "direct", where the components are directly damaged by ionizing 

particles, and "indirect" actions, in which chemical changes are induced by the reactions of 

the products of water radiolysis with the food components. Irradiation of food containing fat 

in the presence of oxygen will lead to the development of rancid off-flavors due to lipid 

oxidation (Stewart 2001). 

Irradiation of carbohydrate-containing food causes browning in sugar, which changes 

the color of food, and reduces the viscosity of food by reducing degree of polymerization of 

starch. In some carbohydrate foods, radiation also causes degradation of polysaccharides, 
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such as starch, by inducing cleavage of glycosidic bond forming lower-molecular-weight 

sugars such as glucose, maltose, erythrose, ribose and mannose (Dauphin and Saint-Lebe 

1977; Simic 1983; Sokhey and Hanna 1993). Researchers found that gamma irradiation 

caused modification of starch microstructure, reduction in paste viscosity of wheat, corn and 

rice and tenderization of rice curd texture (Ciesla and others 1991; Grant and D'Appolonia 

1991; Sabularse and others 1991; Sung 2005; Kang and Byun 1996; Wu and others 2002). 

Studies have shown that radiation at certain levels changes the structure of proteins, 

including structural modification of allergens using gamma irradiation to reduce its 

allergenicity (Byun and others 2002a). Radiation also introduced variability into seed storage 

proteins, which then affected their functional properties (Sabato and Lacroix 2002; Manj aya 

and others 2006). Individual or combined methods of radiation had been used to create 

mutant lines in crops breeding such as low-linolenic and high-oleic content (Rahman and 

others 1994, 1995; Patil and others 2004). 

EFFECTS OF IRRADIATION ON SEED GERMINATI0I~T 

Seed germination involves three major stages: imbibition of water, cell elongation 

followed by increase in cell number (Toole and others 1956). The imbibition stage is 

significant for water uptake of the seed prior to growth. Hence, the seed coat plays an

important role in regulating the hydration of the seed, thus affecting its germination ability. 

Hardseed coats of stone beans (hardseeds) cause impermeability of the coats to water and 

dissolved gases, particularly oxygen and carbon dioxide, which then restrain the enlargement 

of the embryo. However, this condition can be improved by breaking or removing the seed 

coats (Toole and others 1956). The formations of hard seeds in legumes are believed to be 
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due to the low moisture and/or high heat endured by the crop during final maturation prior to 

harvest (Mullin and Xu 2001). 

Germination of the soybeans was also proved to be affected by radiation in Sakkar's 

study (1984). Increased doses of gamma radiation of the soybeans at 10, 20, 30, 40 KR (0.1, 

0.2, 0.3, 0.4 kGy) increasingly affected the internode length and delayed the maturation 

process during germination where the maximum depression in germination was observed at 

the 20 KR dose (0.3 kGy) (Sakkar 1984). Manjaya also found the same radiation effect on 

gamma-irradiated soybeans -the plant height, flower color, sterility, leaf shape, early and late 

maturity had been affected (Manjaya and others 2006). Radiation above 0.2kGy reduced 

germination efficiency of lentil seeds while radiation above 1kGy caused loss of its 

germination ability (Chaudhuri 2002). 

FLAVOR AND AROMAS OF SOYFOODS 

The major issue in soybeans is the consumer acceptability of the beany flavor. 

Research on flavor characteristics of soybean products has been studied for decades with the 

intention to improve the flavor. Flavor compounds of raw soybeans have been extracted and 

volatile compounds were isolated and identified (Fuj imaki and others 1965; Arai and others 

1966, 1967; 1970) (Table 6). Volatile compounds from hexane extracted and Supercritical 

Fluid Extracted (SFE) soybean oils were also analyzed by Snyder and King (1994). 

Components identified includes C2 to C9 saturated aldehydes and the monounsaturated 

aldehydes, 2,4-heptadienal and 2,4-decadienal isomers, CS to C8 saturated and unsaturated 

hydrocarbons, ethylfuran and penthylfuran, fatty acids and traces amount of ketones and 



www.manaraa.com

19 

alcohols (Table 7) (Snyder and King 1994). Part of the undesirable aroma in soy products 

maybe due to lipid oxidation in soybeans. 

Table 6. Flavor compounds isolated from raw soybeans. 

Previous studies Flavor compounds 

Volatile neutral compounds from ground 
raw soybeans 

Methanol, ethanol, 2-pentanol, isopentanol, 
pentanol, hepanol, heptanol, and 

(Arai and others 1967) pentanol acetate 

Volatile fatty acids and volatile amines 
from raw soybeans 

Acetic, propionic, isovaleric, valeric, 
isocaproic, caprylic, nonanoic, and 

(Arai and others 1966) capric acids 

Volatiles from ground raw soybean Ethanol, 2-propanone, hexanal 
(Fuj imaki and others 19 6 5 ) 

Volatiles from raw soybean cotyledons Pentanol, heptanol and heptanal 
(Arai and others 1970) 

Volatiles in aqueous solution of soy protein Dimethyl trisulfide, tYans, Mans-2,4-
isolates decadienal, 2-pentyl pyridine, 
(Boatright and Lei 1999) tYans, tuns-2,4-nonadienal, hexanal, 

acetophnone, 1-octen-3 -one. 

Source: modified after Maga JA 1973; Boatright and Lei 1999. 
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Table 7. Headspace volatiles from hexane-extracted and supercritical fluid extracted (SFE) 
soybean oils. 

Aldehydes
Ethanal 
Propanal 
Butanal 
2-Butenal 
Pentanal 
2-Methylbutanal 
2 -P entenal 
Hexanal 
2-Hexenal 
Heptanal 
Octanal 
2t,4c-
Heptadienal 
2t,4t-Heptadienal 
2-Octenal 
Nonanal 
2-Nonenal 
2t,4c-Decadienal 
2t,4t-Decadienal 

Hydrocarbons
Pentane 
2-Methylpentane 
Hexane 
Methyl cyclopentane 
Heptane 
Octane 
1,3-Nonadiene 

Ketones and Alcohols 
Ethano 1 
1-Prop ano 1 
A Butenol 
2-Butanone 
1-Penten-3-one 
1-pentanol 
A butendiol 
3-Pentenol 
1-Hexanol 
1-Octen-3 -ol 

Others 
2-Ethylfuran 
2 -P entylfuran 
Hexanoic acid 

SouYce: Snyder and King 1994 

Due to high unsaturation of soybean's fatty acids, which contain as high as 85% 

unsaturated fatty acids (Table 8), it is very susceptible to oxidation. Lipid oxidation in 

soybeans may be induced by natural enzymes that are present including lipoxygenases, 

lipases and some proteases. Non-enzymatic oxidation or autoxidation of lipids in soymilk 

may occur with the absence of natural enzymes depending on the unsaturation of fatty acids 

in the product and their exposure to oxygen, presences of metal ions (iron and copper), heat 

and UV light. Penalvo and others found no major differences in the fatty acid profile of 

soybeans and soymilk after heat treatment, which indicated the possibility of lipid oxidation 

in both soybeans and its products (Penalvo and others 2004) (Table 8). 
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Table 8. Fatty acid profile comparison of soybeans and traditional soymilk 

Fatty acid Soybean Soymilk 

%SFA 13.8 15.3 
21.2 22.1 

PUFA 64.6 62.4 

* Based on percent of total fatty acids. 
Source: Penalvo and others 2004. 

LIPO~:YGENASE AND LIPID OXIDATION 

Lipid oxidation is the process of the lipid component (unsaturated fatty acids or 

triglycerides) being oxidized in the presence of oxygen forming breakdown products that 

cause undesirable flavors and aromas. The overall mechanism of lipid oxidation involves 

three steps: (1) initiation, the formation of free radicals; (2) propagation, the free-radical 

chain reactions; and (3) termination, the formation of non-radical products. Each step of the 

oxidation is presented in Figure 9. Formation of free radicals and hydroperoxides accelerate 

the oxidation rate, which leads to oxidation of pigments and vitamins, polymerization of free 

radicals, formation of breakdown products that cause unpleasant off-flavor compounds such 

as ketones, aldehydes, alcohols, hydrocarbons, acids and epoxides, as well as causing 

insolubilization of proteins (Figure 3). 
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ROO• + RH --> R• + ROOH 
ROOH--> RO• + HO• 

R• + ROO•--> ROOR 
ROO• +ROB• --> ROOR + OZ 

Breakdown Products 
(Including rancid 
off-flavor compounds) 
such as ketones, aldehydes, 
alcohols, hydrocarbons, 
acids, epoxides 

Unsaturated fatty acid/ triglyceride 

1 
Free Radicals ~— 

Oxygen 

Hydrop~eroxides 

Polymerization 
(Dark Color) 
(Possibly formation 
of toxic compounds) 

Oxidation 
of pigments, 
flavors, 
vltaminS 

Insolubilization 
of proteins 

Figure 3. Mechanism of Lipid Oxidation (Source: Chemistry of Food Systems. University of 
British Columbia.) 

Lipoxygenase, a monomeric polypeptides with a single non-heme iron cofactor, 

consists of three isozymes: Lipoxygenase-1 (L-1), Lipoxygenase-2 (L-2) and Lipoxygenase-3 

(L-3) (Pistorius and Axelrod 1974; Axelrod and others 1981; Siedow 1991). Studies have 

shown that lipoxygenases play significant role in lipid oxidation in both soybeans and 

peanuts (St. Angelo and others 1979; Hildebrand and Kito 1984). The action of lipoxygenase 

in the presence of oxygen molecules on polyunsaturated fatty acids (linoleic and linolenic 

acids) or triglycerides that contain cis, cis-1,4-pentadiene moiety (Figure 4), forms 

hydroperoxide products that decomposed into acids, ketones, aldehydes, or other substances 
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(Rackis and others 1979). These break-down products further react with amino acids (lysine 

and threonine) and proteins to form new reaction products that may impair flavor (Kuck and 

others 1978). The flavor compounds can also interact through non-covalent interactions such 

as hydrophobic, hydrophilic and van der Waals forces, resulting in adsorption of off-flavor 

compounds onto soy protein (Aspelund and Wilson 1983). The principal cause of the 

objectionable flavors is short chain volatile carbonyl compounds, particularly hexanal, that 

bind to the soy protein (Fujimaki and others 1965, Sasaki and others 1981). It also has been 

shown that generation of n-hexanal from linoleic acid is due to lipoxygenase-2 isozyme 

(Matoba and others 1985). 

The presence of lipoxygenase in soybeans is a major concern due to its ability to 

oxidize the polyunsaturated fatty acids (linoleic acids and linolenic acids), thus developing 

beany and grassy off-flavor in soy products by oxidizing polyunsaturated fatty acids (Siedow 

1991; Wilson 1996). However, oxidation of linoleic acid maybe also be catalyzed by soy 

protein aggregation induced by lipoxygenase (Huang and others 2006). Twenty-one 

compounds (11 aldehydes, 3 alcohols, 4 ketones, 1 furan, one alkane and 1 alkene) were 

found in normal soybean line (BouE and others 2005). Studies have been done to improve 

the flavor of tofu and soymilk using lipoxygenase-free soybean (Torres-Penaranda and others 

1998). In order to compare the effect of radiation on products of soybeans (soymilk and 

tofus), IA2032LS, the triple-null genotype soybean, and Vinton 81, lipoxygenase-present 

soybean, were used in this study to verify the effect of radiation versus effect of lipoxygenase 

on off-flavor development in soymilk. 
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caa~ + a~ 
linol~~+c aCld 

OOti 
— COOH 

s-hydroporcxYllnW~i~ acid 

~1~ 
~- ~aa~ 

13-hydro~.~~xyl~nc~at~ tcld 

Figure 4. The oxidation of linoleic acid (cis, cis-9,12-octadecadienoic acid) catalyzed by 
lipoxygenase indicating two possible reaction products: 9- and 13-hydroperoxylinoleic 
acid. (Source: 5iedow 1991.) 

ANTIOXIDANT IN SOYBEANS 

Natural antioxidants found in soybeans such as tocopherols (vitamin E), vitamin C, 

carotenoids, and phenolic compounds are known to be protective against oxidative stresses in 

the soybeans (White and Xing 1997). Antioxidants play a significant role in reducing the 

lipid oxidation level in the soy food products. Several studies reported that aroma compounds 

extracted from soybeans had antioxidant properties comparable to the antioxidant capacity of 

Vitamin E (Pratt and Birac 1979; Lee and Shibamoto 2000). Aroma compounds such as 

eugenol, maltol, benzyl alcohol and 1-octen-3-ol inhibited the oxidation of hexanal in the 

beans and malonaldehyde formation in cod liver oil (Lee and Shibamoto 2000). 

Studies have shown that isoflavones demonstrate a weak antioxidant defense 

mechanism. Flavonoids are a group of plant polyphenols that have the common skeleton of 

the flavan nucleus (Pietta and Mauri 2001). Flavonoids can exert their antioxidant activity by 

inhibiting the activities of enzymes, including lipoxygenase and cyclooxygenase, by 

chelating metal ions, and most importantly, by scavenging free radicals (Shi and others 2001). 

Isoflavones, a significant flavonoid compound in soybeans, has been studied and shown to be 
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a possible weak antioxidant in soybeans due to its phenolic structure (Figure 5). Table 9 

shows the isoflavone concentration in different soy products and that processing leads to a 

wide range of isoflavone concentrations in soyfoods (Coward and others 1993, 1998; Wang 

and Murphy 1994). 

Phenolic structure 

,~~~I~~~~aes 

R1
H 
OH 
H 

R~ Compound 
H I~aidzein 
H Genistein 
OCH3 Glycitein 

~~~ 

R3
H 
OH 
H 
H 
OH 
H 
H 
OH 
H 

~  Rs 
H H 
H H 
OCH3 H 
H COCH3
H COCH3
OCH3 COCH3
H COCH2COOH 
H COCH2COOH 
OCH3 COCH2COOH 

Compound 
aidzin 

Genistin 
Glycltln 

1~cetyldaidzin 
Acetylgenistin 
Acetylglycitin 
Malonyldaidzin 
Malonylgenistin 
1Vlalonylglycitin 

Figure 5. Chemical structure of 12 isoflavone isomers. (Source: Song and others 1998.) 
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Table 9. Isoflavone concentration in different soy products. 
Product Total Isoflavone (µg/g) 
Isoflavone in soybean 

Range 0.1-0.4% 
Average 2.5 

Soybean 1271.2 
Toasted soy flakes 3095.4 
soy flour 1807.0 
Isolated soy protein 2161.5 
Textured vegetable protein 2110.2 
Regular soymilk 96.0 
Low-fat soymilk 41.9 
Non-fat soymilk 11.6 
Regular tofu 323.0 
Low-fat tofu 260.9 

Source: Coward and others 1993, 1998; Wang and Murphy 1994. 

APPE CE AND TEXTURAL QUALITY OF SOYFOODS 

Quality of soyfoods needs to be monitored and maintained at high levels to ensure 

consistent characteristic of the products. Viscosity of soymilk and texture of tofu are 

significant in determining specific characteristic of the food products as well as providing 

acceptable mouthfeel for consumers. As the quality attributes of soymilk and tofu, 

measurement on rheological properties and textural characteristics are widely done in the 

food industry for quality control. 

Viscosity of soymilk can be measured using a double gap cylinder sensor system 

Model DG41 (Haake Waltham, MA), which is made up of the bell-shaped rotor and a beaker 

or cup. Figure 6 shows the geometry design of the sensor system, where the radii relationship 

of the shear surfaces is almost equal to create identical shearing conditions in both gaps. 
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RZ — R4 
R1 R3

Rl =Radius Beaker (inside) 
R4 =Radius Beaker (outside) 
R3 =Radius Rotor (outside) 
RZ =Radius Rotor (inside) 
L =Length of shear Surface 
a =Distance 

Figure 6. Geometry of Sensor System DG41 made up of a beaker and abell-shaped rotor. 
(Source: Hawke 1997) 

Viscosity of the soymilk can be determined by plotting the change of shear stress (z) 

and shear rate (y.) with time (s) by using Hawke Software RheoWin-RS150 (Hawke 1998) 

(Figure 7). Shear stress is proportional to the torque (Md) and to the stress factor (A) 

(Equation 1). Shear rate is proportional to the angular velocity or speed and the shear factor 

(M) (Equation 3). 

Shear Stress (z) =Stress Factor (A) •Torque (Md)  (1) 

Where as 
Stress Factor (A) =  1  (2) 

2X7CXR1 2 XL 

Shear Rate (~y) = Shear factor (M) x Angular speed (SZ)  (3) 
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Where as Shear factor (M) =  2 X RaZ

Ra2_R12 

Angular speed (Sl) = 2~r x n 
60 

Sh
ea

r 
St

re
ss

, P
a
 

Source: Haake 1997. 

Newtonian Fluid 

Shear Rate, 1/s 
Figure 7. Plot of shear stress vs shear rate for determination of viscosity. 

Rheological properties of the soymilk and other liquids can be were determined based 

on Power's Law (T = K• 'y.") where as n is the flow behavior index and K is flow consistent 

coefficient (unit of Pa•sn) of the fluid. The type of fluid can be determined based on these 

rheological properties as shown in Table 10. Newtonian fluids have a flow consistent 

coefficient (K) greater than zero, flow behavior index (n) equal to 1, and no shear stress (Q) 

(Steffe 1996). 
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Table 10. I~heological characteristics of different fluid types. 
Fluid Type I~ n ~ 

Herschel-Bulkley > 0 0 < n< oo > 0 
Newtonian > 0 1 0 

shear-thinning (pseudoplastic) > 0 0< n~ 1 0 
Shear-thickening (dilatent) > 0 1 < n < o0 0 

Bingham plastic > 0 1 > 0 

Source: Steffe 1996. 

Texture of tofu can be measured using texture profile analysis (TPA). It uses double 

compression to imitate the first bite and second bite by humans during ingestion of food. 

Seven attributes, including hardness, adhesiveness, springiness, cohesiveness, gumminess, 

chewiness and resilience, are measured by plotting a graph of force versus time (Figure 8). 

Each attribute is characterized by calculation as shown in Table 11. 
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Figure 8. Texture profile analysis (TPA) (Source: Texture Technologies Corp. 2005.) 
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Table 11. Determination of Texture Profile Analysis (TPA) attributes. 
Textural Attribute Determination of Attribute 
Hardness Peak force of the first compression of the product. 

Adhesiveness Area 3 

Fracturability The first significant peak during the probe's first compression of 
the product. 

Cohesiveness Area of work during the 2nd compression / Area of work during 
the first compression (Area 2/Area 1) 

Springiness 2nd compression distance /original compression distance 
(Length 2/Length 1) 

Chewiness Gumminess *Springiness (Length 1/Length 2) 

Gumminess Hardness *Cohesiveness (Area 2/Area 1) 

Resilience Area during the 1st withdrawal /Area of the 1st compression 
(Area 4/Area 5) 

Source: Texture Technologies Corp. 2005. 

Hardness of the tofu can be measured by taking the peak force of the first 

compression using the equipment such as Wilson®/Shore® Hardness Testers (Instron Corp., 

Norwood, MA) and TA-XT2i texture analyzer with Texture Expert Software (Texture 

Technologies Corp., Scarsdale, NY). Fracturability of a product occurs at the first significant 

peak of the plot during the first compression. However, fracturability has not been measured 

in analysis of tofu texture. Cohesiveness measures the ability of the product to withstand a 

second deformation relative to its behavior during the first deformation. Springiness 

determines how well a product springs back after it has been deformed during the first 

compression. Chewiness only applies to solid products while gumminess only applies to 

semi-solid products. Resilience measures how well the product "fights to regain its original 

position" (Texture Technologies Corp. 2005). 



www.manaraa.com

31 

In conclusion, a number of studies have been published on the effects of radiation on 

quality and functionality of different types of food. However, studies on soybeans quality and 

functionality as influenced by radiation are still limited. Only a few studies showed that 

gamma irradiation changes functional properties of soy proteins. Therefore, studies on the 

effects of electron beam irradiation on the quality and functional properties of soybeans may 

solve more questions of radiation effects on food quality as well as concerns of both 

Homeland Security and NASA, which leads to two hypotheses of this study: 

Hypothesis 1: 

Radiation and storage conditions, during transit to Mars, interact to decrease the 

amount of natural antioxidants in the soybean, induce lipid oxidation and decrease the yield 

and quality of soymilk and tofu. 

Hypothesis 2: 

Radiation at 1, 5, lOkGy will decrease the germination rate of the soybeans. 

OBJECTIVES 

The objective of this research is to establish whether electron beam irradiation at 1, S 

and 10 kGy of soybean cultivars would have an influence on microbial load, seed 

germination, antioxidant potential, aroma of soymilk, and the yield and texture of tofu. 
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CHAPTER 3 

MATERIALS AND METHODS 

Two non-GMO soybean cultivars were selected based upon the results of Wilson and 

others (2004): Vinton 81 (Pattison Bros. Mississippi River Terminal Inc., Clayton, IA) and 

IA2032LS (Stonebridge Ltd., Cedar Falls, IA). Both cultivars are high in protein and large 

seeded. Vinton 81 is considered to be the gold standard cultivar of the soyfoods industry for 

soymilk and tofu production. IA2032LS lacks three lipoxygenase isozymes and thus has a 

milder aroma and flavor (Wilson and others 2004b, 2005). It is used for soymilk, tofu and 

edamame soybean production. Soybeans harvested in two different crop years (2003, 2004) 

were used in this study: 2003 and 2004. 

One pound of soybeans was weighed into Ziploc0 bags (10 x 12.002 seal top), air 

forced out, sealed and labeled prior to radiation treatment. The amount of soybeans in the bag 

allowed a single layer of seeds to be exposed to the radiation treatment. The bagged soybeans 

were irradiated with electron beam radiation at Texas A&M Univeristy (College Station, TX) 

Electron Beam Facility at three radiation dose levels: 1, 5, 10 kGy. As a control (0 kGy), one 

set of each cultivar accompanied the treated soybeans to the irradiation site but was not 

treated. Four 1-lb bags (four replicates) were used for each dose level for each cultivar. A 

second set of soybeans harvested in 2004 was irradiated at the same irradiator site the 

following year as a crop year treatment for the study. Dosimeters accompanied each bag to 

verify radiation doses the soybeans received. All soybeans were stored in the dark at 20 °C 

prior to and after irradiation. 
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The electron beam-treated dry whole soybeans were evaluated for proximate 

composition, vitamin E content, antioxidative capacity, thiobarbituric acid reactive 

substances (TBARS), peroxide value (PV), free fatty acids (FFA), microbial load, and 

germination rate. Functionality changes in soybeans were evaluated by manufacturing the 

beans into soyfood products (soymilk and tofu) and determining yield, color, texture and 

aroma. 

PROXIMATE ANALYSIS 

Proximate compositions of the soybeans were analyzed using a Near Infrared (~~) 

spectrometer Infratec 1229 whole Grain Analyzer (Foss North America, Inc., Eden Prairie, 

MN). Approximately 500 g of samples were poured into the hopper and analyzed at 8 nm 

intervals from 810.5-1075nm (Hardy and others 1996). Percentage of moisture, protein, lipid 

and fiber are reported on a 13% moisture basis. The control and treated soybeans for each 

cultivar were analyzed in 4 replicates. 

VITAMIN E ANALYSIS 

Two hundreds grams (~ 0.05 g) of soybeans for each treatment were sent to 

Medallion Labs (Minneapolis, MN) for vitamin E analysis. Approved methods of the 

American Association of Cereal Chemist (AACC) Method 86-06 were used to determine the 

vitamin E (a-tocopherol) contents in the samples by using high performance liquid 

chromatography (HPLC) (AACC 2001). The percentage moisture of each sample was 

analyzed by using the vacuum oven method at 70 °C for 16 hours. The vitamin E content of 
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each sample was reported as IU/100g. Only samples harvested in 2003 were analyzed for 

vitamin E content. All analyses were done in duplicate. 

ISOFLAVONE ANALYSIS 

The total isoflavone content as well as the amount of each isomer (daidzein, genistein, 

glycitein, daidzin, genistin, glycitin, malonyl daidzin, malonyl genistin, malonyl glycitin, 

acetyl daidzin, acetyl genistin, acetyl glycitin) were determined by Dr. Murphy's lab at Iowa 

State Univeristy using a Beckman System Gold High-Performance Liquid Chromatograph 

(HPLC) (Beckman, Fullerton, CA) with the Beckman System Gold HPLC data processing 

software (version 8, 1993) (Song 1998). The isoflavone content was reported as µg/g. Only 

samples harvested in 2003 were analyzed for vitamin E content. All analyses were done in 

duplicate. 

ANTIOXIDANT CAPACITY 

One gram (~ 0.05 g) of each soybean sample was finely ground and mixed with 10 

mL of HPLC grade methanol in a water bath shaker at room temperature for S minutes. The 

extracted solution was filtered through a syringe with a 0.45 µm cellulose acetate filter 

(Sartorius AG, Goettingen, Germany). A 30-µL aliquot was used to determine the antioxidant 

capacity of lipid soluble compounds with the Photochem® instrument using 

chemiluminesence following the ACL-Kit protocol (Analytikj enaAG, `1~Toodlands, TX). At 

least two blank measurements with less than 5% deviation were done and a calibration curve 

was constructed at a range of 0.5, 1.0, 2.0 and 2.5 nmol Trolox standards prior to sample 
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measurements. Each sample was nun in triplicates. Antioxidant capacity was calculated based 

on the equation below and reported as µg/mg: 

Concentration (µg/mg) —  Quantity*Dilution*M*Volume 

Pipetted Volume*Weighted Sample 

Quantity: Trolox equivalents in nmol 

M: 250.3 ng/nmol (Molax mass of Trolox) 

Pipetted volume: 30 µL 

Weighted sample: 1000 mg 

Volume: 10 mL 

Dilution: 10 (at 1:10 dilution factor) 

THIOBARBITURIC ACID (TBA), PEROXIDE AND FREE FATTY ACID (FFA) 

ANALYSES 

The SafTestOO System (SafTestOO, Inc., Tempe, AZ), AOAC certified method 

(certificate number: 030405) (AOAC International, Gaithersburg, MD), was used to measure 

the thiobarbituric acid reactive substances (TBARS), peroxide value and percent free fatty 

acid of dry whole soybeans. Two grams of ground soybeans (f 0.05 g) were weighed into the 

bottom of 50 mL-conical tube and 4.0 mL of SafTestOO Preparation Reagent (isopropanol, 

>99%) were added to make a 1:3 dilution. Ten glass beads were added to each conical tube. 

The sample was screw-capped and vortexed at the dial speed 10 for one minute followed by 

15 minutes of heating on a Type 17600 Single Block Modular Dri-Bath (Barnstead 

International, Dubuque, IA). Samples were filtered through the membrane on the SafTest~ 
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Filtration Unit at vacuum pressure of 5 -10 in. Hg. The samples were kept at 40 °C in the heat 

block until tested. An aliquot of sample was reacted with standardized reagents and analyzed 

by the SafTest® Analyzer with 570/690 or 550/690 filter (Table 12). 

Table 12. Summary of each SafI'est® Kit-STD Assays 
SafI'est® Kit-STD Assays Amount of Reaction time Filter* 

sample used (µl) (min) 
AldeSafeTM Kit-STD Assays 1 SO 90 550/690 
PeroxySafeTM Kit-STD Assays 50 15 570/690 
FASafeTM Kit-STD Assays 100 10 570/690 
* Primary assay wavelength: SSOnm or 570nm; reference wavelength: 690nm. 

AldeSafeTM Kit-STD Assays test measured the malonaldehyde content as µmol of 

malonaldehyde/kg of sample. PeroxySafeTM Kit-STD Assays measured the lipid peroxide 

content as meq of peroxides/kg of sample. FASafeTM Kit-STD Assays measured the acid 

contents as percent oleic acid in the sample. The final results were obtained by adjusting the 

instrumental results based on the dilution factor: 

where as 

Final result = SafTestTM result *Dilution 

SafTestTM result: Instrument measurement 

(µmol/kg or meq/kg or %) 

Dilution: 3 (at 1:3 dilution factor) 

The equipment was calibrated with the standard calibrators for each kit and low, medium and 

high controls were tested as references prior to further measurement of samples. Each sample 

was tested in 2 replicates and three measurements were taken for each replicate. 
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MICROBIAL ANALYSIS 

Five grams (~ 0.05 g) whole soybeans for each treatment were packed into 6.5 cm x 

9.3 cm sterile sealable bags and tested for microbial load at NASA Johnson Space Center 

Microbiology Laboratory (NASA Johnson Space Center, Houston TX). Each sample was 

tested in 5 replicates for total aerobic count (CFU/g), coliform count (coliform/g), 

salmonellae count (CFU/25g) and yeast and mold count (yeast/mold/g) based on the 

specification SD-T-0251 for raw material at NASA (Table 13). 

Table 13. SD-T-0251 Specif cation for microbiology analysis. 
Microbial Analysis Specification 
Total Aerobic count IF any exceeds 20,000 and more than one exceeds 10,000 =FAIL 

coliform count IF any exceeds 100 or more than one exceeds 10 =FAIL 

Salmonellae count Zero tolerance 

Yeast and Mold count IF any exceeds 1000 or more than one exceeds 100 or more than one 
exceeds 10 A. Flavus =FAIL 

GERMINATION STUDY 

The standard Warm Germination Test (AOSA and ISTA official test) was conducted 

at the Iowa State University (ISIS Seed Testing Laboratory using a tray method for the 

germination study. Two layers of crepe cellulose papers (KimPak~) were placed on a tray, 

sprayed with water and soaked for at least 12 hours. Four replicate measures of 100 soybeans 

seeds for each treatment were randomly planted on each corner of eight trays loaded with 

moist KimPak~ using a planting size 4 or 5 board. A press board was used to lightly press 

the seed into the KimPakOO to ensure adequate contact between seed and substrata. Each 
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corner of the tray was labelled and the trays of seeds were put in two different carts and 

allowed to germinate in two different bays at 2S °C, 9S% RH for 8 days. Each tray was 

evaluated and the amount of normal, abnormal germinated and dead seeds were recorded and 

converted to percentage. Random sampling of the germinated seed at each dose level was 

taken for germinated height measurement (length from root tip to cotyledon). 

SOYMILK AND TOFU MANUFACTURE 

The functionality of the soybeans was evaluated by manufacturing soymilk and tofu. 

The standardized methods of Johnson and Wilson (1984), Wilson (1996), Moizuddin and 

others (1999a), Wilson and others (2004b, 2005) were used. The Japanese method of soymilk 

production (Wilson 1995) from whole soybeans was utilized (soak beans 8-12 hours, grind 

beans, cook at 95 °C for 7 minutes, filter out okara, coagulate the soymilk, cut the curds to 

release the whey, press in tofu press, and refrigerate overnight prior to chemical and 

instrumental tests). Stainless steel tofu presses (5 x 4.5 x 9 cm3; NASA FTCSC Equipment 

Grant 2004), with press weights (Wilson 2004b) for 100 g (dry beans) batches were used. 

Percent soluble solids of soymilk was measured by a Bausch & Lomb Abbe-3L 

Refractometer (Fisher Scientific Research, Pittsburgh, PA)] and coagulated at 85 °C using 

calcium sulfate dehydrate (Allied Custom Gypsum, Bessie, OK). The amount of coagulant 

needed was determined by the method of Moizuddin and others (1999b). After the arrival of 

the irradiated soybeans, control and treated samples were run in order to get an estimate of 

their behavior and the amount of coagulant needed per treatment. 
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YIELD CALCULATION 

Yield of soymilk was calculated based on the dry beans weight (Formula 1). Yield of 

tofu was determined based on initial amount of soymilk used to manufacture tofu (Formula 

2) and initial amount of dry beans weight used to produce both soymilk and tofu (Formula 3). 

soymilk yield =  ~• of soymilk (g) x 100%  (1) 
wt. of dry beans (g) 

tofu yield (soymilk basis) _  ~• of tofu (g)  x 100%  
wt. of soymilk used (g) 

tofu yield (dry beans basis) _  ~• of tofu (g)  x 100% 
wt. of dry beans (g) 

(2) 

(3) 

COLOR ANALYSIS USING HUNTER LABSCAN ~:E 

Color of samples (soymilk, tofu, okara and whey) was measured as L, a, b values 

using Hunter LabScan XE 0/45 Spectrophotometer (Hunter Associates Laboratory, Inc., 

Reston, VA, USA) in the port-down orientation with 1.75-inch viewing area, 2.0-inch port 

size set at illuminant D65 and 10° standard observer. The instrument was calibrated with a 

white the (X = 79.43, Y = 84.32, Z = 90.39) and a black tile. The samples were filled into a 

6.Ocm diameter x 1.Scm depth plastic Petri dish with optical clarity (Fisher Scientific 

Research, Pittsburgh, PA), placed on the instrument port and measured from top of the dish. 

Each measurement was done in triplicate on three different spots of the sample. L = 100 
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indicates lightness and L = 0 indicates darkness, + a =red and — a =green, and + b =yellow 

and — b =blue. 

VISCOSITY MEASUREMENT 

Haake RheoStress RS 150 (Thermo Electron Corporation, Waltham MA) was used to 

measure the viscosity of soymilk. 6.3 mL of soymilk sample was filled into the measuring 

cup DG41 and was measured by sensor Rotor DG41 at the setting of starting speed at 10.00 

1 /s, ending speed at 15 00.00 1 /s, gap distance at S . l mm, temperature at 23.0 °C. Each 

sample was analyzed in duplicate and three measurements were taken for each replication. 

Viscosity of soymilk was recorded at average shear rate of 600.00 1 /s. K and n values of the 

soymilk were determined by the Haake Software RheoWin-RS 150 based on a power law 

function. 

TEXTURE ANALYSIS 

Tofu samples were cut into 2 cm x 2 cm x 2 cm cubes for analysis. The TA-XT2i 

texture analyzer (Texture Technologies Corp., Scarsdale, NY) was warmed up for at least 30 

minutes prior to use. A cylinder probe, TA-30 (2" diameter, 20 mm tall) was attached to the 

instrument and calibrated by inputting the initial distance of the probe to the base. The force 

was calibrated without weight and with a 5 kg weight monitored by the software Texture 

Expert. Anon-fracture texture profile analysis (TPA) was used and the parameter settings as 

listed below were entered: 

Load cell 5 kg 

Distance (probe) 40 mm 
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Pre-test speed 2.0 n:im/sec 

Test speed 1.7 r~1m/sec 

Post-speed speed 5.0 r~:lm/sec 

Rupture test distance 1 

Distance 50% 

Force 0.98 N 

Time 1 sec 

Trigger 0.05 N 

Samples were analyzed for hardness, adhesiveness, springiness, cohesiveness, 

gumminess, chewiness and resilience. Each sample was analyzed in 4 replicates. 

FLAVOR ANALYSIS BY GAS CHROMATOGRAPHY (GC) 

A 25-m1 aliquot of soymilk prepared from each control and treatment soybeans were 

placed into a labeled 100m1 flat bottom crimp top headspace vials (Supelco, Bellefonte, PA). 

The bottles were sealed with a standard seal (20 mm for vial 5 ml) containing a 20 mm 

rubber septa Teflon (Supelco, Bellefonte, PA) using a llmm-hand crimper. Samples were 

stirred with a magnetic stirring bar while headspaces were sampled at 40 °C for 45 minutes 

with a solid-phase microextraction (SPME) fiber coated with 2cm-50/30µm 

Divinylbenzene(DVB)/Carboxen/ Polydimethylsiloxane (Boylston and others 2003). A 

Model 6890 gas chromatograph (Hewlett-Packard, Inc., Wilmington, DE) with a splitless 

injection port and flame ionization detector (FID) was used to separate the volatile 

compounds. The SPME fiber was removed from the sample headspace and thermally 

desorbed via the injection port for three minutes at set temperature of 220 °C while the 
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column temperature was held at 30 °C. Volatiles were swept onto an SPB-5 fused-silica 

capillary 30 m x 0.25 mm x 0.25 µm film thickness column (Supelco, Inc.). Ramp 1 was set 

to increase oven temperature from 30 °C at a rate of 3.5 °C/min. Ramp 2 increased oven 

temperature from 110 °C at a rate of 10.0 °C/min until the final temperature 200 °C is 

reached. The total run time was 3 9.8 6 min. The detector temperature was set at 220 ° C and 

the flow rates of the detector gases were air at 400 mL/min, hydrogen at 30 mL/min and 

constant nitrogen flow (make-up gas) at 25 mL/min. Concentration of the volatiles were 

determined based on the peak area using the GC program; areas below 5 were not recorded 

(Crook and Boylston 2004). 

Major volatile compounds were further identified by using a gas chromatograph-mass 

spectrometer (Micromass GCT, Waters Corp., Milford, MA) with atime-of flight mass 

analyzer. The samples were thermally desorbed into the GC injection port in a split (100:1) 

mode. GC condition were set at an initial temperature of 30 °C for 3 min, 3.5 °C/min from 

30 °C to 110 °C, and 10.0 °C/min from 110 °C to 200 °C. The mass spectrometer conditions 

were set as electron ionization positive (EI +) polarity, source electron energy at 70 eV, 

source electron current at 200 µA, ion source temperature at 180 °C, source ion repeller at 

0.8 V, electron multiplier voltage at 2700 V, scan range from 41 to 400 m/s, at a frequency of 

scanning cycle every 0.75 seconds. Mass spectra of the volatile compounds were then 

compared to a spectral library (Wiley Library), Flavornet (Acree and Am 2004) and a flavor 

and fragrance database (FlavorWORKS, Flavometrics, Version 2.0, Anaheim Hills, CA) for 

identification (Crook and Boylston 2004). 
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STATISTICAL ANALYSIS 

A three-way analysis of variance (ANOVA): radiation (0, 1, S, 10 kGy), year (2003, 

2004), cultivar (Vinton 81, IA2032LS), radiation:year, radiation:cultivar, year:cultivar, and 

radiation:year:cultivar interactions, was performed to analyze the results statistically using 

program R, a statistical computing and graphics language and environment (R Development 

Core Team 2006, Vienna, Austria). A blocking effect was done on replicate (total of 4 

replicates for this study design). Significance of the results were determined based on p<0.05. 

All pair wise comparison among means was analyzed using Tukey Honestly Significantly 

Different (HSD) with p<0.05 to be significant. However, results and discussion will be 

focused on radiation effect and its interaction. 

Data for vitamin E and isoflavone analysis were statistically analyzed using atwo-

way ANOVA: radiation (0, 1, S, 10 kGy), cultivar (Vinton 81, IA2032LS) and 

radiation:cultivar due to unavailability data from crop year 2004. Significance of the results 

were also determined based on p<0.05. A11 pair wise comparison among means was analyzed 

using Tukey Honestly Significantly Different (HSD) with p<0.05 to be significant. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

Since the effect of radiation on all attributes of soybeans is the major concern in this 

study, significant effect of radiation and its interactions with year and cultivar effects will be 

discussed. Effects due to interactions between crop year and cultivars is expected because 

different growing conditions including environmental factors (soil, weather, oxidation stress) 

and in vivo condition of the crop (enzymes activity, metabolism rate) may result in variation 

from year to year for each cultivar. Therefore, effects of crop year and cultivar may not be 

discussed in depth. Statistical results indicating the significance of the effects of radiation, 

year, cultivar and the interactions for each variable are listed in Appendix A (Table 23 - 38). 

PROXIMATE ANALYSIS 

Proximate composition of the two soybean cultivars: Vinton 81 and IA2032LS, from 

crop years 2003 and 2004 are shown in Table 14 on a 13% moisture basis. 1Vo significant of 

radiation effect on the moisture, protein, oil and fiber of the soybeans was found. The results 

indicate that the composition of soybeans was highly dependent upon the cultivar and crop 

year of the soybeans, which is to be expected as growing conditions vary from year to year. 

Studies have shown that there is an effect of variety, crop year and location on the isoflavone 

composition of soybeans (Wang and Murphy 1994). Both cultivars from 2003 (10.28% and 

10.99% respectively) had higher moisture content than cultivars from 2004 (9.30% and 

10.58% respectively), and IA2032LS had slightly higher moisture than Vinton 81 across both 

years. Both cultivars were considered high protein but variation within each cultivar can be 
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observed depending on its harvesting year. Statistical analysis shows that the effect of crop 

year on the moisture, protein, oil and fiber contents in these soybeans was strongly dependent 

on the cultivar (year:variety p<0.05). Vinton 81 from 2003 (average of 38.88%) had higher 

protein content than IA2032LS from the same year (average of 36.45%) while in 2004, 

IA2032LS (average of 38.98%) had higher protein content than Vinton 81 (average of 

38.16%). A similar case was found for oil content of both cultivars, IA2032LS had a higher 

oil content than Vinton 81 in both crop years but oil content in both cultivars from 2003 were 

generally higher than cultivars from 2004. The oil content for each cultivar also varied for 

both years where IA2032LS was higher in 2003 (average of 19.87%) than in 2004 (average 

of 17.74%). Along-term crop rotation study revealed that environmental factors and putative 

changes in soil ecology could affect seed protein and oil content (Bennett 2005). Variation 

within a cultivar from different year may also due to changes in enzyme activities 

(desaturase) in synthesizing fatty acids, influenced by both temperature and light quality 

(Cheesbrough 1989; Britz and Cavins 1993). There is no fiber content difference between 

cultivars in 2003 (average of 4.50% for both) but Vinton 81 (average of 4.70%) has higher 

fiber content than IA2032LS in 2004 (average of 4.59%). 

Table 14. Soybean Compositions of Vinton 81 and IA2032LS 
Crop Year cultivar Moisture Protein* Oily` Fiber* 

2003 Vinton 81 10.28a 38.88a 17.79a 4.SOa 
IA 2032 LS 10.99b 36.45b 19.87b 4.SOa 

2004 Vinton 81 9.30c 38.16c 17.41c 4.70b 
IA 2032 LS 10.58d 38.98a 17.74a 4.59c 

'~ Data are reported as % on a 13 %moisture basis. 
**Means within a column with different letters (a,b,c) are significantly different at p<0.05 
(n = 16). 
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VITAMIN E ANALYSIS 

Only dry whole soybeans from crop year 2003 were analyzed for vitamin E content. 

The Vinton 81 cultivar (average of 6.17 IU/100g) had a slightly higher vitamin E level than 

the IA2032LS cultivar (average of 5.26 N/100g). A similar trend of radiation effect was 

observed in both cultivars where vitamin E level slightly decreased after radiation at 1 kGy 

and remained fairly constant at higher doses (5 and 10 kGy). However, the differences due to 

the effect of radiation as well as within both cultivars are not significant (p>0.05). 

Simontacchi's study (1993) suggested that a-tocopherol content in soybeans is 

physiologically adjusted as a response to conditions of oxidative stress due to environment 

(Simontacchi and others 1993). 

ISOFLAVONE ANALYSIS 

Preliminary study on isoflavone content of e-beam treated soybeans was done on 

cultivars harvested in 2003. Since isoflavones have been shown to be strongly linked to 

antioxidant activity (Rice-Evans and others 1996), these data were compared to antioxidant 

capacity of soybeans influenced by radiation in this study. Radiation did not significantly 

affect the total isoflavone content as well as the total genistein of the soybeans but 

significantly affected the total daidzein and glycitein content (Figure 9). Total daidzein and 

glycitein were increased at 10 kGy (averages of 591.75 µg daidzein/g and 113.75 µg 

glycitein/g) compared to the non-irradiated soybeans (averages of 584.75 µg daidzein/g and 

109.5 µg glycitein/g). The total isoflavone content of the soybeans was different depending 

on the cultivars (Table 15). IA2032LS had higher total isoflavone content than Vinton 81 

cultivar (averages of 1443.5 µg/g and 1158.0 µg/g respectively). Also, IA2032LS cultivar 
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had higher content of daidzein, genistein and glycitein than the Vinton 81 cultivar as shown 

in Table 15. 
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Figure 9. Influence of e-beam irradiation at 0, 1, 5, 10 kGy on total isoflavone and its 
isomers (daidzein, genistein, glycitein) (µg/g) of whole dry soybeans. Note: Error bar 
(T) indicates standard error for means of 2 replicates and 2 cultivars (n = 4); ` * ' 
indicates significant radiation effect (p<0.05). 
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Table 15. Isoflavone content of e-beam irradiated whole dry soybeans affected by cultivar 
(Vinton 81 and IA2032LS). 

Cultivar (µg isoflavone/g) 
Total Daidzein Total Genistein Total Glycitein Total Isoflavone 

IA2032LS 613.00 ~ 30.57a 717.00 ~ 9.81a 113.5 ~ 10.30a
Vinton 81 546.63 ~ 10.78b 508.13 ~ 11.29b 103.25 ~ 3.48b

1443.5 ~ 46.46a
115 8.0 ~ 24.5 8b

* Means (~ standard deviation) within a column with different letters (a, b) are significantly 
different at p<0.05 (n = 8). 

ANTIOXIDANT CAPACITY 

There was no significant effect of irradiation on the antioxidant capacity of the e- 

beam surface irradiated whole dry soybeans. However, there was a significant interaction 

between the crop year and cultivar effect (year:variety p<0.001), where the antioxidant 

capacity of the soybeans strongly depended on its cultivar and year harvested (Figure 10). 

There was no difference in antioxidant capacity for both cultivars in 2003 (average of 1.22 

µg/mg). However, significant cultivar effect was observed in 2004: IA2032LS (average of 

1.52 µg/mg) had higher antioxidant capacity than Vinton 81 (average of 0.92 µg/mg). This 

was comparable to results found in a recent study by Wilson and others (2004a) that 

antioxidant capacity is lower in Vinton 81 than IA2032LS. Different compounds including 

vitamin E, isoflavones and other natural phenolic compounds that are present in soybeans 

may serve as antioxidant. However, only vitamin E and isoflavones were analyzed in this 

study. As shown in both analyses, antioxidant compounds may vary from cultivar to cultivar 

as well as year to year. The antioxidant capacity highly depended on the variety of soybeans 

itself, the growing condition as well as storage conditions of the soybeans (Wang and 

Murphy 1994; Hoeck and others 2000; Lee and others 2003). 
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Figure 10. Antioxidant capacity in ug/mg of e-beam irradiated whole dry soybeans due 
to interaction of cultivar (Vinton 81, IA2032LS) and crop year (2003, 2004) effects. 
Note: Error bar (T) indicates standard error for means (n = 64); * ' indicates 
significant difference (p<0.05). 

THIOBARBITURIC ACID (TBA), PEROXIDE AND FREE FATTY AIDS (FFA) 

ANALYSES 

Measurement of thiobarbituric acid reactive substances (TBARS) using A1deSafeTM

Kit-STD Assays showed that irradiation did not significantly affect the malonaldehyde 

content of the dry whole soybeans but significant year and cultivar effects were observed 

(Figure 12). Data showed that average malonaldehyde content across both Vinton 81 and 

IA2032LS cultivars from 2003 (5.06 nmoUml) was higher than the cultivars from 2004 (2.43 

nmoUml). The IA2032LS had significantly higher malonaldehyde content than the Vinton 81 

cultivar (4.09 nmol/ml and 3.40 nmol/ml respectively). Although vitamin E and isoflavones 
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are speculated to be responsible for the antioxidant capacity of the soybeans, both data 

cannot be correlated with the antioxidant capacity due to analyses being done at different 

period of study. Variation in malonaldehyde content of soybeans may due to the variation in 

oil content of the soybean, as shown in Table 14, that IA2032LS cultivar had the higher 

average oil content and higher average malonaldehyde content than the Vinton 81 cultivar 

(Figure 12). Therefore, both cultivar and crop year of soybeans played a significant role on 

soybean malonaldehyde content; the crops were grown at different time and in different 

condition. Priestley and Leopold (1979) found that unsaturation in whole soybean seeds did 

not change significantly during aging thus suggesting that oxidation of seed lipids may be 

unrelated to the process of seed aging (storage time). Storage conditions (time and 

temperature) also affected antioxidant capacity of soybean (Wilson and others 2004a). 

There was no significant effect of irradiation, crop year or cultivar observed in lipid 

peroxide content of the e-beam irradiated whole dry soybeans. However, there was a 

significant interaction beriveen crop year and cultivar (p<0.05) (Figure 13). The IA2032LS 

cultivar had higher peroxide content than Vinton cultivar in 2003, but the opposite case was 

observed in 2004. The IA2032LS cultivar from 2003 had the highest peroxide content 

compared to the Vinton 81 cultivar of 2003 and both cultivars in 2004 (Vinton 81: average of 

0.041 meq/kg; IA2032LS: average of 0.019 meq/kg). Measurement of peroxide content of 

the soybeans was inconsistent in indicating levels of lipid oxidation due to the lack of 

sensitivity in this method where peroxide content of some samples were below detectable 

limit, which were report as 0 meq/kg. 
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Figure 12. Influence of crop year (2003, 2004) and cultivar (Vinton 81, 
IA2032LS) on the malonaldehyde content (nmoUml) of e-beam surface 
irradiated soybeans. Note: Error bar (T) indicates standard error for means 
(n = 48); ` * ' indicates significant cultivar effect (p<0.05); ` ** ' indicates 
significant year effect (p<0.05). 
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Figure 13. Interaction effects of crop year (2003, 2004) and cultivar (Vinton 
81, IA2032LS) on the lipid peroxide content (meq/kg) of e-beam surface 
irradiated soybeans. Note: Error bar (T) indicates standard error for means 
(n = 24). 

Fatty acid content was measured as percent oleic acid. There were significant effect 

of radiation, year and cultivar on the e-beam treated soybeans (p<0.05). However, significant 

interaction effects between radiation and cultivar as well as year and cultivar were observed. 

The effect of radiation on free fatty acid content of the dry whole soybeans was highly 

dependant on the cultivar (irradiation:year p<0.05) (Figure 14). An increase in percent oleic 

acid was observed for the 10 kGy e-beam irradiated Vinton 81 cultivar comparing the control 

and lower dose irradiated soybeans (0, 1, 5 kGy). However, a decrease was observed in the 

IA2032LS cultivar comparing the control soybeans and the e-beam treated soybeans (1, 5, 10 

kGy). Variation of free fatty acid content also significantly depended on crop year and 

cultivars (year:cultivar p<0.05), which is expected due to the different growing condition and 
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nutritional stress level of the crop during each crop year. The free fatty acid content in Vinton 

81 cultivar from 2004 was significantly higher than the IA2032LS cultivar but no difference 

was observed in both cultivars from 2003 (data was not shown). It is also comparable to the 

malonaldehyde and peroxide content data in that IA2032LS has a significantly higher free 

fatty acid content than Vinton 81 (p<0.05). Higher amount of malonaldehyde, peroxides and 

free fatty acids that were found in IA2032LS could due to its higher oil content compared to 

Vinton 81 (Table 14). However, the majority of the samples had very low levels of free fatty 

acids that were at the detectable limit of this method, and therefore, reported as less than 

0.120% oleic acid. 
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Figure 14. Interaction effects of radiation (0, 1, 5, 10 kGy) and cultivar 
(Vinton 81, IA2032LS) on the free fatty acid content measured as percent 
oleic acid (%) of e-beam surface irradiated soybeans. Note: Error bar (T ) 
indicates standard error for means (n = 12). * ' indicates data below 
detectable limit and reported as less than 0.120%. 
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MICROBIAL ANALYSIS 

The e-beam treated soybeans were analyzed for total aerobic, coliform, and 

salmonella bacteria and yeast and mold counts. No salmonella was found in any sample 

(Table 18). Coliform counts for Vinton 81 control (0 kGy) ranged from 0 to 8 CFU/g while 

no colifortns were found in the IA2032LS cultivar or in any of the irradiated soybeans. 

Results also show that e-beam surface irradiation did reduce the microbial load of the whole 

soybeans for both cultivars where the controls (0 kGy) had the highest total aerobic count/g 

(Vinton 81 ranged from 170 to 450 CFU/g and IA2032LS ranged from 50 to 170 CFU/g). 

Radiation reduced the total aerobic count to 0-280 CFU/g at 1 kGy; 0-20 CFU/g at 5 kGy and 

0-10 CFU/g at 10 kGy (Table 18). Some yeasts and molds were isolated (0 to 18 CFU/g) and 

Aspergillus flavus was found on one sample, which may be due to contamination after 

irradiation (sampling). All of the soybean cultivars in these studies would meet NASA Flight 

Food Microbiological Requirements (Table 13) (i.e. they could fly on Shuttle and 

International Space Station missions). No specific microbiological standard for dry whole 

soybeans from the field was found. In contrast to typical microbiological quantitative range 

of commercial "normal" cereal grains (total aerobic count is 102-106 /g, coliform count is 102- 

104 /g, yeasts and molds: 102-104 /g) (Deibel and Swanson 2001), NASA specification is 2 

log tighter for the total aerobic count and coliform count, 1 log tighter for yeast and mold 

counts than the upper range of regular standard. 
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Table 18. Microbial study on e-beam irradiated soybeans at 0, 1, 5, lOkGy 
Vinton 81 IA2032LS 

Radiation Dose (kGy) 0 1 5 10 0 1 5 10 

Total Aerobic count 170-45 0 0-2 80 0-10 0 5 0-170 20-3 0 0-20 0-10 
Coliform 0-8 0 0 0 0 0 0 0 

Salmonella 0 0 0 0 0 0 0 0 
Yeast and Mold 0-20 0-3 6 0-10 0-14 8-32 0-2 0-6 0 

** All counts are reported in CFU/gram. 
* Ranges shown are crop year averages (n = 20). 

GERMINATION STUDY 

Germination ability of the control and treated soybeans was studied by evaluating the 

percent of normal, abnormal germination and dead seed. E-beam radiation significantly 

affected the growth of the soybean seed (Figure 15). The seeds were able to grow normally 

for the control (0 kGy), 1 kGy and 5 kGy but the height of the sprouts was affected. The non- 

irradiated soybeans were able to grow up to an estimated range of 15-17 cm; soybeans 

irradiated at 1 kGy were able to grow to an estimated height of 5-7 cm while seeds irradiated 

at 5 kGy grew to an estimated height of 2-3 cm. Most of the 10 kGy-irradiated soybeans 

appeared to be moldy dead seeds after 8 days of incubation. The influence of radiation and 

cultivar on the germination of soybeans are shown in Figures 16 and 17. Figure 16 shows the 

average of germination data across both years (2003 and 2004) for Vinton 81 while data for 

IA2032LS is shown in Figure 17. The germination ability of irradiated seeds was 

significantly decreased in both cultivars (p<0.05). Normal germination decreased 

significantly from 87.6% and 46.9% respectively for the control seeds (0 kGy) to 0 and 0.5% 

respectively for the 10 kGy irradiated seeds (Figures 16 and 17). As radiation dose increased, 

most of the seeds experienced abnormal germination or either loss of germination ability 
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(dead seeds). Lesions in nucleic acids, due to radiation, played an important role in 

deterioration of seed (Roberts and Osborne 1973). The effect of radiation on the normal 

germination of soybeans strongly depended on the cultivar or crop year of the soybeans 

(radiation:year p<0.0024; radiation:cultivar p<0.0001). Radiation reduced normal 

germination of the e-beam treated soybeans at a higher rate in 2004 than in 2003 (Figure 18a) 

and for Vinton 81 cultivar (Figure 18b). 

 .~.~.4...~. 

(b) 1 kGy 

(a) 0 kGy (Control) 

(c) 5 kGy 
(d) 10 kG.y 

Figure 15. Influence of e-beam radiation at dose levels of 0, 1, 5, 10 kGy on 
seedling vigor of soybeans after 8 days germination at 25 °C, 95% humidity (a) 
control seed (0 kGy): 15 - 17 cm; (b) 1 kGy: 5 - 7 cm; (c) 5 kGy: 2 - 3 cm; (d) 10 
kGy: 0 cm. 
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Figure 16. Germination study of e-beam irradiation soybean seeds (Vinton 81) at 0, 1, 5, 10 
kGy. Note: Error bar (T) indicates standard error for means (n = 8). 
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Figure 17. Germination study of e-beam irradiation soybean seeds (IA2032LS) at 0, 1, 5, 10 
kGy. Note: Error bar (T) indicates standard error for means (n = 8). 
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Figure 18. Interactions effects between (a) radiation and year, (b) radiation and cultivar on 
normal germination of e-beam irradiated soybean. 

Age of the seeds also significantly affected germination ability in that seeds from 

2004 (average of 97.8% and 62% for each cultivars) had higher percent of normal 

germination than seeds from 2003 (average of 77.5% and 31.8% for each cultivars) (Table 

19). Comparing the two different cultivars, Vinton 81 (average of 87.65% normally 

germinated) had higher germination ability than IA2032LS (average of 46.90% normally 

germinated). These variations in germination ability may due to the genetic, composition 

(nutrient source) and growth condition differences between the two cultivars. One of the 

variations within a cultivar was the presence of stone beans (hard shell beans that do not 

absorb water) in the IA2032LS cultivar from 2003, with the lowest percentage of normal 

germination (31.8%) among all (Table 19). 
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Scientists also believe that aging of dried seeds in storage is accompanied by changes 

in membranes and nucleic acids (Heydecker 1972; Robert and Osborne 1973; Villiers 1973). 

Alterations in seed membranes during aging are due to peroxidation and autooxidation of 

polyunsaturated fatty acids that leads to free radical formation and possible peroxidative 

damage to lipids, proteins, and nucleic acids. Changes in the membranes of aged seeds may 

enhance leakage of solutes during seed imbibition, indicating inability of seeds to re-form 

coherent membranes during rehydration, thus resulting in loss of vigor and lack of 

germination (Ching and Schoolcraft 1968; Parrish and Leopold 1978; Priestley and Leopold 

1979). Soybeans treated at 10 kGy were softer and had some broken cotyledons after soaking 

compared to the control soybeans. Wilson (2005) observed that soybeans treated at 10 and 30 

kGy using gamma ray and e-beam were visually damaged after soaking. Soybeans irradiated 

at 3 0 kGy lost up to 4% solid into the soaking water. Harman and Mattick (1976) studied 

accelerated aging of pea seeds and found that the decrease in germination rate was paralled 

by a pronounced decline in linoleic (C18:2) and linolenic (C18:3) acids whereas the saturated 

and monoenoic fatty acids remained unchanged. 

Percent of abnormal beans decreased drastically at 10 kGy (averages of 1.8% and 

0.8% for each cultivar) as most of the seeds were dead due to the effect of irradiation 

(Figures 16 and 17). A slightly higher percentage of abnormal beans was found in IA2032LS. 

Hard seeds were classified as dead seeds after 8 days of germination. Percent dead seeds 

increased as the radiation dose increased, from averages of 5.38% and 22.38% for each 

cultivar at 0 kGy to the highest averages of 97.75% and 99.25% at 10 kCy. Wilson and 

others (2005) and Wilson (2004) also found that e-beam or gaamma ray irradiation at 10 kGy 

or 30 kGy caused loss of ability of the seed to germinate. High levels of irradiation 
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negatively affected the physiology of the seedlings, hence, reduced its germinating ability 

(Buck and others 2003). In contrast to the normal germination data, IA2032LS cultivar had 

higher percentage of dead seeds at control (0 kGy) (average of 22.38%) compared to the 

Vinton 81 cultivar (average of 5.38%) (Figures 16 and 17). Crop year of the soybeans also 

decreased its germination ability, where both cultivars (Vinton 81 and IA2032LS) had higher 

percent of dead seeds for harvest from 2003 (average of 10.50% and 41.25% respectively) 

than 2004 (average of 0.25% and 3.50% respectively) (Table 19). The higher percentage of 

dead seeds in IA2032LS cultivar from 2003 may also due to the presence of stone beans. 

Table 19. Germination study of e-beam irradiated soybeans at 0, 1, 5, 10 kGy 
(Vinton 81, IA2032LS) for 2003 and 2004. 

Radiation Dose 
(kGy) 

Percent (%) 
Vinton 81 IA2032LS 

2003 2004 2003 2004 

No
rm
al
 

0 77.50 97.80 31.80 62.00 
1 72.50 94.50 22.50 73.80 
5 31.00 85.30 0.00 50.30 
10 1.00 0.00 0.00 0.00 

Ab
no

rm
al

 0 12.00 2.00 27.00 19.50 
1 18.00 3.75 29.75 24.50 
5 33.00 12.00 10.50 34.25 
10 3.50 0.00 0.00 1.50 

~ 
o~ 
q 

0 10.50 0.25 41.25 3.5 
1 9.50 1.75 47.75 1.75 
5 46.00 2.75 89.50 13.00 

10 95.50 100.00 100.00 98.50 
* Each value is the mean of four replicates of 100 seeds. 
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WATER ABSORPTION 

Water absorption of the soybeans after 10 hours of soaking is shown in Figures 19 

and 20. Considering solely the radiation effect, water absorption of the beans significantly 

increased as the radiation dose level increased especially at 10 kGy for both cultivar (p<0.01) 

(Figure 19). The water absorption ranged from 1 % to 7% for the control beans (0 kGy) and 

10 kGy e-beam treated soybeans respectively. This maybe due to seed coat and cellulose 

damage caused by radiation treatment that allowed more water absorption. Considering the 

individual effects (cultivar and crop year), Vinton 81 cultivar had higher percent of water 

absorption than IA 2032LS cultivar (p<0.001) after soaking while soybeans from 2004 had 

higher percentage of water absorption than soybeans from 2003 (p<0.001) (Figure 20). 

Vinton 81 had higher water absorption in 2003 due to the presence of stone beans in 

IA2032LS cultivar, which failed to absorb water. This problem could be improved by 

removing the seed coat, allowing water permeability of the seed. Each cultivar also behaved 

differently in each year (year: cultivar p<0.0001) where IA2032LS from 2004 had higher 

water absorption than IA2302LS from 2003 due to the absense of the 'hard coat' seeds. 

Different growing conditions during each year may have affected the water absorption ability 

of the crop seeds. Mullin and Xu (2001) showed that water uptake ratio of the seeds as well 

as occurrence of hard seeds correlated to the differences in hemicellulose content of the seed 

coat fractions. It also had been shown that resistance to water absorption was consistent with 

the calcium content in the seed coat (Saoi 1976). Fluctuation of environment temperature 

during development of the seeds may increase the creation of stone beans. 
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Figure 19. Water absorption in percent of e-beam irradiated soybeans (Vinton 81, 
IA 2032LS) at radiation doses of 0, 1, 5, 10 kGy. Note: Error bar (T) indicates 
standard error for means (n = 8). 
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Figure 20. Interaction effects between year (2003, 2004) and cultivar (Vinton 81, 
IA2032LS) on the water absorption of the e-beam irradiated soybeans after 10 
hours soaking. Note: Error bar (T) indicates standard error for means (n = 16). 
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SOYMILK AIVD TOFU YIELD 

Percent yield of soymilk was calculated based on the initial weight of the dry beans. 

Overall, soybeans from 2004 (977.49%) had a higher percent yield of soymilk as compared 

to soybeans from 2003 (957.42%) (Figure 21) (p<0.05). No significant effect of radiation and 

cultivars on the percent yield of soymilk was observed. As suggested by Gayler and Sykes 

(1985), nutritional stress during seed development of the soybeans affects the storage 

proteins. Environmental factors may have played a significant role in affecting the storage 

protein of the seeds thus resulting in soymilk yield variation. 
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Figure 21. Percent soymilk yield from E-beam irradiated soybeans in 2003 
and 2004. Note: Error bar (T) indicates standard error for means (n = 32). 

Percent tofu yield was calculated two ways: 1) based on the initial starting amount of 

soymilk by weight, and 2) based on of the initial starting amount of dry soybeans by weight 

(Table 20). Both calculations demonstrated similar results -the soy proteins were extracted 
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into the soymilk and in turn were able to be coagulated by the calcium sulfate dihydrate 

(coagulant). Irradiation did not affect °Brix of soymilk or tofu yield at radiation doses as high 

as 10 kGy, but lower tofu yield was found in soybeans irradiated at 30 kGy (Wilson and 

others 2005). Significant cultivar effect was observed -Vinton 81 (average of 189.50% on 

dry beans basis) had a higher percent tofu yield than IA2032LS (average of 169.20% on dry 

beans basis) (Table 20) (p<0.05). This may be due to Vinton 81 cultivars yielded a 

higher °Brix in soymilk. On a dry beans basis, the higher protein content of Vinton 81 

contributed to the higher tofu yield. No significant difference in tofu yield was found when 

calculated on the soymilk used basis. However, there was no crop year effect on the tofu 

yield for both calculations. Textural changes due to cultivar and irradiation are noted later in 

this report and previously by Wilson and others (2005). 

Table 20. Percent tofu yield of e-beam irradiation soybeans (Vinton 81, IA2032LS) at 0, 1, S, 
10 kGy. 

Tofu Yield (%)1
Radiation Dose 

(kGy)
0 
1 
5 
10

Average 

T~znton 81 
2003 2004 

24.01 ~ 1.19 
23.69 ~ l .S 1 
23.04 ~ 2.31 
24.76 ~ 0.46 

25.49 ~ 1.06 
24.07 ~ 1.01 
24.71 ~ 0.42 
25.17 ~ 2.68 

24.37 ~ O.S7 

IA2032LS 
2003 2004 

22.40 ~ 2.30 22.02 ~ 0.83 
22.36 ~ 1.26 22.10 ~ 0.94 
21.64 1.38 22.17~O.S2 
22.09 ~ 0.89 22.56 ~ 1.35 

22.17 0.18 
Tofu Yield (%)Z

0 
1 
5 
10 

Average 
'Percent tofu yield determined based on amount of soymilk used. 
2Percent tofu yield determined based on amount of dry soybeans. 
Note: All data shown are mean ~ standard deviation. ` * 'indicates significant cultivar effect 
(p<0.05). 

187.12 ~ 11.06 196.82 ~ 10.74 
184.51 ~ 8.1 S 189.02 ~ 9.99 
183.50 ~ 11.66 191.86 ~ 6.69 
188.86 ~ 3.33 194.29 ~ 26.21 

189.50 ~ 11.97 

175.10 ~ 23.05 
153.82 ~ 21.42 
165.96 ~ 11.41 
171.63 ~ 4.53 

170.13 ~ 6.84 
172.90 ~ 9.57 
171.56 ~ 5.10 
172.46 ~ 10.18 

169.20 ~ 13.32 
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COLOR ANALYSIS OF 

WHOLE SOYBEANS, SOYMILK, TOFU, OKARA AND WHEY 

Color of Whole Soybeans 

Color of irradiated whole soybeans was analyzed and reported as Hunter L, a, b 

values in Figures 22 (a), (b), (c). Radiation at 1, 5, 10 kGy did not significantly affect the 

physical appearance of the whole dry soybeans. There was a significant cultivar effect on 

lightness (L value) and significant year effect on the redness (+ a value) and yellowness (+ b 

value) of the whole dry soybeans (p<0.05). Vinton 81 cultivar generally had a lighter color 

than the IA2032LS cultivar. However, soybeans harvested in 2003 had more redness (+ a 

value) and yellowness (+ b value) than soybeans harvested in 2004. However, interaction 

effects between crop year and cultivar can be seen in lightness (L value), redness (+ a value) 

and yellowness (+ b value) of the soybeans (p<0.001). Vinton 81 cultivar had higher 

lightness (L value) than IA2032LS cultivar in 2003 but no difference in lightness (L value) in 

2004 for two cultivars (Figure 22 a). IA2032LS cultivar harvested in 2004 had the lower 

redness (+ a value) and yellowness (+ b value) values than Vinton 81 cultivar but no 

difference in redness (+ a value) and yellowness (+ b value) of the whole soybeans in the 

2003's harvest (Figures 22 b and 22 c). 
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Figure 22. Interactions of year (2003, 2004) and cultivar (Vinton 81, IA2032LS) effects on 
(a) lightness (L value); (b) redness (+ a value); (c) yellowness (+ b value) of e-beam surface 
irradiated whole dry soybeans. Note: Error bar (T) indicates standard error for means (n = 
48). ` * 'indicates significant difference between two means. 
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Color of Soymilk 

Color analysis of soymilk produced from E-beam irradiated soybeans is shown in 

Figures 23 (a), (b), (c). There was no significant effect of irradiation and crop year on the 

lightness (L value) of the soymilk. However, soymilk produced from the IA2032LS cultivar 

had higher L value than Vinton 81 cultivar (Figure 23 a). Significant color changes due to 

radiation effect were observed in the greenness (- a value) and yellowness (+ b value) of the 

soymilk (Figure 23 b & c). Radiation decreased the greenness (- a value) and yellowness (+ b 

value) of the soymilk. This may be due to the effect of radiation on the structure (double 

bonds) of pigments (such as chlorophyll) and polyunsaturated fatty acids in the soymilk. 

Unsaturated structures were being oxidized resulting in less greenness. There was significant 

cultivar effect on the greenness (- a value) and yellowness (+ b value) of soymilk, in that 

soymilk from Vinton 81 had less greenness (-a value) and less yellowness (+ b value) than 

soymilk from IA2032LS at all dose levels (Figures 23 a and 23 b). This may be due to the 

"oxidative" reaction of lipoxygenase on color pigments [e.g. bleaching of j3-carotene and use 

of colorimetric method for lipoxygenase activity determination (Cha and others 2000; 

Anthon and Barrett 2001)] in Vinton 81 that reduced the greenness (- a value) and 

yellowness (+ b value) in comparison to the soymilk from the lipoxygenase-free IA2032LS. 

Soymilk produced from soybeans harvested in 2003 had more yellowness (+ b value) than 

soymilk produced from soybeans harvested in 2004 but it is expected to be different from 

year to year due to different environmental stresses (nutrient, oxygen, weather etc.) (Data 

was not shown). 

Statistical analysis shows that there is interaction effects between radiation and year 

as well as year and cultivar on the yellowness (+ b value) of the soymilk. Interaction effects 
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of radiation and year is shown in Figure 23 c but interaction between year and cultivar is not 

a major concern (data not shown). Consistent decrease in yellowness (+ b value) of soymilk 

can be seen in the IA2032LS cultivar. However, yellowness (+ b value) of the soymilk was 

increased at 1 kGy but decreased at higher dose level (5 and 10 kGy) (Figure 23 c). This 

could due to the environmental effects (nutrient source, weather) during the growing of 

soybeans in different years that caused inconsistent metabolism rate and enzyme activities, 

resulting in color differences of soybeans and later in the soymilk. 
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Figure 23 (a). Cultivar effect on the lightness (L value) of soymilk 
produced from e-beam irradiated soybeans (Vinton 81, IA2032LS). 
Note: Error bar (T) indicates standard error for means (n = 48). ` * ' 
indicates significant difference between two means. 
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soybeans (Vinton 81, IA2032LS) at 0, 1, 5, 10 kGy. Note: Error bar (T) indicates standard 
error for means (n = 24). 
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Color of Tofu 

Figures 24 (a), (b) and (c) show the results for color of tofus made from e-beam 

irradiated soybeans at dose levels of 0, 1, 5, 10 kGy for both Vinton 81 and IA2032LS 

cultivars. Irradiation did not affect the lightness (L value) of the tofus but did affect its 

redness (+ a value) and yellowness (+ b value). Soybeans harvested in 2004 produced tofus 

with more lightness (L value) than tofus from soybeans harvested in 2003. Tofus from 

IA2032LS had more lightness (L value) than tofus from Vinton 81. Soybean cultivars 

harvested in 2003 produced tofus with higher redness value (+ a value) than cultivars 

harvested in 2004 (data not shown since year and cultivar effect are expected). As shown in 

Figure 24 a, radiation increased the redness (+ a value) of tofus where the 10 kGy e-beam 

treated soybeans produced tofus with the highest redness (+ a value) compared to lower 

doses and control beans. The radiation treatment also significantly decreased the yellowness 

(+ b value) of the (Figure 24 b). This is similar to the finding of Wilson and others that e- 

beam or gamma irradiation of soybeans at 10 and 30 kGy decreased the lightness (L value) 

and yellowness (+ b value) but increased redness (+ a value) of tofus (Wilson and others 

2005). Tofus produced from IA2032LS had more yellowness (+ b value) than Vinton 81 in 

general. Tofus made from soybeans harvested in 2003 had higher + b value (yellowness) than 

tofus made from soybeans harvested in 2004 (data not shown). Considering the interaction 

effects of cultivar and year, yellowness (+ b value) of the tofus from each year was affected 

differently depend on each cultivar. This is comparable to the color data of soymilk where 

soymilk with more yellowness produced tofus with more yellowness. 
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Figure 24 (a). Influence of radiation on redness (+ a value) of tofu made 
from e-beam irradiated soybeans at radiation doses of 0, 1, 5, 10 kGy. 
Note: Error bar (T) indicates standard error for means (n = 48). 
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Figure 24 (b). Interaction effects of cultivar (Vinton 81, IA2032LS) and year 
(2003, 2004) on yellowness (+ b value) of tofu made from e-beam irradiated 
soybeans. Note: Error bar (T) indicates standard error for means (n = 48). 
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Color of Okara 

Okara, a by product of soybean production, is used as ingredient in food products to 

increase the fiber content. Hence, the color of okara may affect the color or appearance of the 

food products. Figures 25 (a), (b), (c) show the color analysis of okara. Radiation at 1 - 10 

kGy decreased the lightness (L value) of the okara and increased the redness (+ a value) of 

the okara as the radiation doses increased (Figures 25 a and 25 b). However, it had no effect 

on the yellowness (+ b value) of the okara. There was significant year effect on the lightness 

(L value), redness (+ a value) and yellowness (+ b value) of the okara (p<0.0001). Okara 

from soybeans harvested in 2003 has lower lightness (L value), higher redness (+ a value) 

and higher yellowness (+ b value) than okara from soybeans harvested in 2004. There was 

no difference in lightness (L value) and yellowness (+ b value) of the okara in both cultivars 

except okara from Vinton 81 had lower redness (+ a value) than IA2032LS in general. Crop 

year effect on redness (+a value) and yellowness (+ b value) of okara strongly depended on 

the cultivar where okara from Vinton 81 cultivar had more redness (+ a value) than okara 

from IA2032LS in 2004 but less redness (+ a value) in 2003 (data not shown). Significant 

interaction effects between year and cultivar was observed on yellowness (+ b value) of 

okara. Yellowness (+ bvalue) of the okara was higher for Vinton 81 cultivar than IA2032LS 

in crop year 2004 but no difference in 2003 (Figure 25 c). Color changes in okara were also 

observed due to cultivar (Wilson and others 2004) and due to high dose irradiation at 10 kGy 

and 30 kGy (Wilson and others 2005). 
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Figure 25 (c). Interaction effects of cultivar (Vinton 81, IA2032LS) and year (2004, 
2004) on the yellowness (+ b value) of okara from soymilk processing using e-beam 
irradiated soybeans. Note.• Error bar (T) indicates standard error for means (n = 48). 

Color of Whey 

Color analysis of whey from E-beam irradiated soybeans is shown in Figures 26 (a), 

(b) and (c). While other effects remain constant, radiation significantly affected the greenness 

(- a value) and the yellowness (+ b value) of the whey, but did not affect the lightness (L 

value) of the whey. Radiation generally increased the greenness (- a value) and decreased the 

yellowness (+ b value) of the whey produced. Both year and cultivar significantly affected 

the lightness (L value), greenness (- a value) and yellowness (+ b value) of the whey. Whey 

from IA2032LS had more lightness (L value), greenness (- a value) and yellowness (+ b 
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value) than whey from Vinton 81. Soybeans from 2003 produced whey with slightly higher 

lightness (L value), greenness (- a value) and yellowness (+ b value) than whey from 

soybeans harvested in 2004. Data discussed above was not shown. Statistical analysis 

indicated the significant interactions between radiation and year effects as well as year and 

cultivar effects on the lightness (L value), greenness (- a value) and yellowness (+ b value) of 

the whey (p<0.001). Only interaction effects between radiation and year on lightness (L 

value) of whey is showrfl (Figure 26 a). Radiation increased the lightness (L value) of whey 

produced from 2004 soybeans as radiation dose increased, but lightness (L value) of whey 

from 2003 soybeans was increased at 1 kGy and remain after 1 kGy (Figure 26 a). 

Significant interaction between radiation and cultivar effects was observed on the greenness 

(- a value) and yellowness (+ b value) (p<0.001). Radiation increased the greenness (- a 

value) of the whey from the IA2032LS cultivar but did not significantly increase the 

greenness (- a value) of whey from Vinton 81 cultivar after 1 kGy (Figure 26 b). Increase of 

greenness (- a value) in the whey may be due to some residual chlorophyll pigments being 

extracted into the whey due to radiation treatment, hence, increased the redness (+ a value) in 

the tofu (Figure 24 a). Radiation also increased the yellowness (+ b value) of whey from 

Vinton S 1 at 1 kGy but increased yellowness (+ b value) of whey from IA2032LS at 1 and 5 

kGy then decreased at ~ 0 kGy (Figure 26 c). As a result, color of soy products and by- 

products was affected by environment and condition of the soybeans, cultivars and 

sometimes the effect of radiation. 
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Figure 26 (a) and (b). (a) Interaction effects of radiation (0, 1, 5, 10 kGy) and 
year (2003, 2004) on the lightness (L value); (b) Interaction effects of 
radiation (0, 1, 5, 10 kGy) and cultivar (Vinton 81, IA2032LS) on the 
greenness (- a value) of whey from tofu processing using e-beam irradiated 
soybeans. Note: Error bar (T) indicates standard error for means (n = 24). 
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RHEOLOGICAL EFFECTS IN SOYMILK AND TEXTURAL CHANGES IN TOFU 

Effect of Irradiation on Viscosity of Soymilk 

All soymilk samples were found to be newtonian fluids because the shear stress was 

directly proportional to shear rate without yield stress (Figure 27). Flow consistent 

coefficient (I~ and flow behavior index (n) of the soymilk were determined based on Power's 

law. Averages of flow consistent coefficient (I~, flow behavior index (n) and viscosity for 

soymilk of Vinton 81 and IA2032LS cultivars are shown in Table 21. There was significant 

cultivar effects and interaction effects of year and cultivar on the K value, n value and 

viscosity of soymilk produced from e-beam treated soybeans (p<0.0001). Soymilk produced 
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from Vinton 81 cultivar had higher K value and viscosity but lower n value than soymilk 

produced from IA2032LS cultivar (Table 21). The soymilk produced from Vinton 81 had a 

higher °Brix (most likely higher protein) in comparison to the soymilk from IA2032LS. Even 

though the variation of the flow consistent coefficient (I~ and the flow behavior index (n) 

was very small, but it was significant enough to indicate the variability between each 

cultivars and crop year. Overall, the flow consistent coefficient (I~ of soymilk was 0.0026 

Pa•s" on average, and the average flow behavior index (n) was 1.09, which is very close to 1 

(indicating properties of newtonian fluid) (Table 21). Significant yeax effect was also 

observed in the flow behavior index (n) of the soymilk (p<0.05). 
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Figure 27. Rheological characteristics of soymilk produced from e-
beam treated soybeans. Direct proportional of shear stress to shear rate 
indicates the Newtonian property of the soymilk. 
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Table 21. Summarized rheological properties (K, n, viscosity) of soymilk 
produced from soybeans irradiated at 0, 1, 5, 10 kGy. 

CultivaY °BYix K n Viscosity (cP) 
Vinton 81 7.2a 0.0029a 1.09a 1.56a
IA2032LS 6.8b 0.0023b l .1 l b 1.39b
Average 7.0 0.0026 1.10 1.49 

* Means within a column with different letters (a, b, c) are significantly 
different at p<0.05 (n = 48). 
** Viscosity (cP) is reported at the shear rate of 600.00 1/s. 

Radiation of whole soybeans significantly affected viscosity of soymilk produced but 

not the flow consistent coefficient (I~ and flow behavior index (n). Figure 28 shows the 

interaction effects of radiation and year on the viscosity of the soymilk produced from e- 

beam irradiated soybeans. Radiation had increased viscosity of soymilk produced from 2004 

soybeans, especially at 10 kGy, but did not significantly increased the viscosity of soymilk 

produced from 2003 soybeans (Figure 28). The same interaction effect of radiation and year 

can be seen for the flow consistent coefficient (I~ of the soymilk (Figure 29). Radiation 

affected the flow consistent coefficient (I~ of soymilk differently in both years. The K value 

of soymilk produced from 2004 soybeans was decreased at 1 kGy but increased to the 

highest value at 10 kGy. In comparison to the soymilk produced from 2003 soybeans, 

radiation increased the K value at 1 kGy but remained consistently higher than control (0 

kGy) at 5 kGy and 10 kGy. Increase in viscosity and flow consistent coefficient (I~ of the 

soymilk due to radiation effect maybe due to interaction of radiolysis products (free radicals) 

on the cellulose of soybeans forming shorter fragments that flow through the filter cloth 

during sepazation of okara from the soymilk. This was also observed by Wilson and others 
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(2005) in that the okara from soybeans irradiated at 10 and 30 kGy were mushy and hard to 

be separated from the milk. 
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Figure 28. Interaction of radiation (0, 1, 5, 10 kGy) and year (2003, 2004) 
effects on the viscosity (cP) of soymilk made from e-beam irradiated 
soybeans. Note: Error bar (T) indicates standard error for means (n = 
12). 
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Rheological properties of the soymilk depend on the protein composition of the 

soybeans: its glycinin(11S)/(3-conglycinin(7S) ratio. Kim and Wicker (2005) found that 

soybeans with higher 11 S/7S ratio produced more non-newtonian soymilk (lower flow 

behavior index, n). Soymilk produced from the Vinton 81 cultivar had lower flow behavior 

index (n = 1.089), indicating that it is more non-newtonian than the soymilk produced from 

the IA2032LS cultivar (n = 1.105). This data is similar to protein analysis of high dose study 

(0 - 30 kGy) that Vinton 81 had higher 11 S/7S ratio than the IA2032LS (2.09 vs 1.94) (Table 

22 in Appendix B). 
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Effect of Irradiation on Texture of Tofu 

The texture of tofu produced from E-beam irradiated soybeans was analyzed for 

hardness, adhesiveness, springiness, cohesiveness, gumminess, chewiness, and resilience. 

There was significant year effect on the hardness, gumminess, chewiness and resilience of 

the tofus. Cohesiveness, gumminess and chewiness were significantly affected by the cultivar 

effect. However, effects of year, cultivar and their interactions on texture of tofu were not 

discussed in detailed because it is expected that the protein composition of soybeans and its 

subunits is different in each cultivar and may vary from year to year within each cultivar 

depending on the growing conditions. Signif cance of each effect on the textural attributes of 

the tofu is shown in Appendix A (Table 37). 

Radiation decreased the cohesiveness and resilience of the tofus. However, there were 

significant interaction between radiation and cultivar on the cohesiveness and resilience of 

the tofu (Figures 30 and 31). Cohesiveness of the tofu made from Vinton 81 was decreased 

consistently but cohesiveness of tofu made from IA2032LS was slightly increased at 1 kGy 

and further decreased at 5 kGy and 10 kGy (Figure 30). Radiation did not decreased the 

resilience of the tofu made from Vinton 81 at 1 kGy and 5 kGy but significantly decreased 

the resilience at 10 kGy. In comparison to tofu made from IA2032LS, resilience of tofu was 

decreased at 5 kGy (Figure 31). Wilson's study also found that irradiated soybeans at high 

levels (10 kGy and 30 kGy) produced tofu with softer texture, less adhesive, less springy, 

less cohesive, and less resilient (Wilson and others 2005). Modification of the coagulation 

and pressing process of the tofu could possibly be modified to mediate some of these textural 

changes (Wilson and others 2004b). 
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Various studies had shown that gelation properties of the soy globulins played 

significant role in hardness of the gels. Depending on proportion of the protein subunits in 

each cultivar, gels made from glycinin was harder than gels made from ,Q-conglycinin 

(Renkema and others 2001; Rickert and others 2004; Saio and others 1969; Watanabe 1997; 

Yagasaki and others 2000). Differential gelling properties of the specif c subunits within 

glycinin and ,Q-conglycinin may also contribute to the variation in hardness of the tofu 

(Tezuka and others 2000; Mujoo and others 2003; Yagasaki and others 2000; Mohamad 

Ramlan and others 2004). 
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Figure 30. Interaction effects of radiation (0, 1, 5, 10 kGy) and cultivar (Vinton 81, 
IA2032LS) on cohesiveness of tofu made from e-beam irradiated soybeans. Note: 
Error bar (T) indicates standard error for means (n = 24). 
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(Vinton 81, IA2032LS) on resilience of tofu made from e-beam irradiated 
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Storage protein subunits in the soybeans contributed significantly to the textural and 

rheological properties of soy food products. Differences in protein content and protein ratio 

may affect the viscosity, textural properties and color of soymilk, indicating changes in 

quality and functionality. Kim and Wicker (2005) had shown that soybeans with higher ratio 

of 11 S subunit produced harder, chewier and gummier tofu. Tofu produced from the 

IA2032LS cultivax is gummier and chewier than tofus produced from the Vinton 81 cultivar 

(Figures 32 a and 32 b), which is inconsistent to Kim and Wicker's finding in that the 

IA2032LS cultivar had slightly lower 11 S/7S ratio than the Vinton 81 cultivar (Table 39 in 

Appendix B). Variation of the protein subunits composition may be affected due to 

nutritional stress during development of seeds as shown by Gayler and Skyes (1985) that 

sulfur deficiency in developing seeds caused a 40% decrease in glycinin and an increase in ,6- 

conglycinin. 

FLAVOR AND AROMA ANALYSIS BY GAS CHROMATOGRAPHY 

During manufacturing of soymilk and tofu, some observations on flavor and aroma 

changes were noticeable. Pleasant fresh soymilk aroma was detected during the heating step 

of the soy slurry produced from the control soybeans (0 kGy) but slight off-odors were 

detected during the processing of 1 kGy-treated soybeans. The off-aromas were increasingly 

strong at 5 kGy and became the worst at 10 kGy. Wilson and others (2005) found strong off- 

aromas in the soymilk made from high dose irradiation (10 kGy and 30 kGy) irradiated 

soybeans. A "wet dog" aroma of other irradiated meat products (e.g. pork, chicken, bee fl was 

detected. A sensory study to determine the type of off-aroma and consumer acceptability of 

the off-aroma in the soymilk from irradiated soybeans is suggested. 
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The flavor profile of both normal soybeans and lipoxygenase-free soybeans were 

studied. With the presence of lipoxygenase, flavor compounds in soymilk made from Vinton 

81 was more complicated, as more peaks were detected by gas chromatography, than 

soymilk from IA2032LS (lipoxygenase-free) (Figure 52 in Appendix C). Seventeen volatile 

compounds in the soymilk were identified including hexanal, trans-2-hexenal, cis-2-hexenal, 

N heptanal, trans-2-heptanal, 1-octenal-3-ol, 2-pentyl-furan, octenal, 2,4-heptadienal, 2-

octenal, nonanal, trans-2-nonenal, trans, trans-2,4-nonadienal, decanal, trans-2-decenal, 2- 

hexyl furan, and trans, trans-2,4-decadienal (Figures 35 - 51 in Appendix C). Most volatiles 

were detected in both soybeans except that trans-2-nonenal was not found in soymilk from 

IA2032LS (Figure 46 in Appendix C). Most of the compounds determined have grassy, 

green, fat and rancid flavor. Table 22 shows the description of each flavor compounds as 

described in Flavornet (Acree & Am 2004). Amount of these different volatile compounds 

identified in the soymilk varied depending on the cultivars and crop year of the soybeans 

used. 

As the radiation dose increased, the amount of flavor compounds (peak area) in 

soymilk produced from the lipoxygenase-free beans (IA2032LS) increased, especially 

hexanal, which is the major contributor to the grassy and beany flavor of the soymilk (Figure 

33 in Appendix C). With the absence of lipoxygenase in soybeans, oxidative rancidity still 

occurs slowly which contributes to the low level of grassy, beany flavor in soymilk (peak 

area range 102-482) (Figure 33). Other volatile compounds such as trans-2-hexenal, trans-2- 

heptanal, 1-octen-3-ol and decanal were increased in soymilk from IA2032LS as radiation 

dose increased. Compared to soymilk produced from the lipoxygenase-present soybeans 

(Vinton 81), the hexanal level was higher (peak area range 438-958) as were most of other 



www.manaraa.com

87 

volatile compounds than lipoxygenase-free soybeans (Figure 34). However, irradiation 

seemed to decrease the amount of some volatiles determined in soymilk from Vinton 81, 

including hexanal, trans-2-heptanal and 1-octen-3-ol, which showed more change as 

radiation dose increased. This could due to the binding of these volatiles to proteins and other 

components in the soymilk as well as non-covalent interactions through hydrophobic, 

hydrophilic, van der Waals forces (Aspelund and Wilson 1983; O'keefe and others 1991). 

These lipid oxidation products may have interacted with lysine residues via Michel addition 

reactions or alkoxyl radicals to form protein carbonyls (Refsgaard and others 2000). 

Meanwhile, consistent formation of minor compounds with higher polarity was observed in 

both soybean cultivars as the radiation dose increased. These compounds formed are 

speculated to be some nitrogen and sulfur containing compounds from proteins breakdown. 

In comparison to the dry beans lipid oxidation analysis (SafTestOO ), higher level of oxidation 

was observed in soymilk (higher production of hexanal). This is due to activation of enzymes 

through soaking of the soybeans and release of enzymes via disruption (grinding) of the 

natural comparhnentalization (which protects the lipids from enzymes reactions) thus 

resulting in higher levels of lipid oxidation products in soymilk. In addition, Vitamin E 

(antioxidant) itself was being destroyed once the beans were ground and exposed to oxygen, 

hence, low level of antioxidative capacity was expected in the soymilk that results in high 

level of oxidation products. Loss of vitamin E was also observed in processing of soybeans 

into tofu (Guzman and Murphy 1986). 
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Table 22. Flavor description of volatile compounds determined in soymilk. 

Volatile compound Retention Time Description 

hexanal 7.600 Grass, tallow, fat 

trans-2-hexenal 10.100 Apple, green 

cis-2-hexenal 10.900 -

N heptanal 12.400 Fat, citrus, rancid 

trans-2-heptanal 15.200 Green 

1-Octenal-3-ol 16.200 Mushroom 

2-pentyl furan 16.600 Green bean, butter 

octanal 17.369 Fat, soap, lemon, green 

2,4-heptadienal 17.83 5 Nut, fat 

2-octenal 19.900 Green 

nonanal 22.000 Soap, plastic 

trans-2-nonenal 24.452 Cucumber, fat, green 

trans, trans-2,4-nonadienal 25.936 Watermelon 

decanal 26.361 Soap, orange peel, tallow 

trans-2-decenal 28.286 Tallow 

2-hexyl furan 29.153 - 

trans, trans-2,4-decadienal 29.700 Fried, wax, fat 
Source: Acree T, Any H. 2004. Flavornet. Geneva, NY: DATU Inc. 
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Figure 33. Flavor compounds determined in soymilk produced from ~-beam_ irradiated 
IA2032LS cultivar (lipoxygenase-free cultivar). 1: Hexanal; 2: Vans-2-hexenal; 3: C'is-2-
hexenal; 4: N heptanal; 5 : Vans-2-heptanal; 6: 1-Octenal-3 -ol; 7: 2-pentyl-furan; 8 : Octanal; 
9 : 2,4-heptadienal; 10: 2-octenal; 11: Nonanal; 12: Vans-2-nonenal; 13 : Vans, tans-2,4-
nonadienal; 14: Decanal; 15 : Vans-2-decenal; 16: 2-hexyl furan; 17: T.~ans, tans-2,4-
decadienal. 
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Figure 34. Volatile compounds determined in soymilk produced from e-beam irradiated 
Vinton 81 cultivar (lipoxygenase-present cultivar). 1: Hexanal; 2: Tans-2-hexenal; 3: Cis-2-
hexenal; 4: N heptanal; 5: Tans-2-heptanal; 6: 1-Octenal-3-ol; 7: 2-pentyl-furan; 8: Octanal; 
9: 2,4-heptadienal; 10: 2-octenal; 11: Nonanal; 12: Vans-2-nonenal; 13 : Vans, tans-2,4-
nonadienal; 14: I~ecanal; 15 : Vans-2-decenal; 16: 2-hexyl furan; 17 : Vans, tans-2,4-
decadienal. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

SUMMARY 

• Proximate composition of soybeans was different depending on its cultivar and 

harvested year. 

• A similar vitamin E content was observed in the dry whole soybeans of both Vinton 

81 and IA2032LS cultivars, while surface irradiation of soybeans did not significantly 

affect the Vitamin E content in whole soybeans at doses of 1-10 kGy. 

• A higher isoflavone content was observed in the IA2032LS cultivar compared to 

Vinton 81 cultivar. E-beam radiation at 1-10 kGy did not significantly affect the 

isoflavone content of the dry whole soybeans. 

• No significant effect of radiation (1-10 kGy) was observed on the antioxidative 

capacity in soybeans, but cultivar and harvest year affected the antioxidative capacity 

of the soybeans. 

• Radiation treatment of dry whole soybeans at 1, 5, 10 kGy decreased the 

malonaldehyde content, but the malonaldehyde content was not correlated well to the 

rancid off-flavor (hexanal) in the soymilk product. After grinding, radiation-induced 

off-odor was detected in soymilk from irradiated soybeans. Lipid oxidation was 

shown to be affected by the soybean cultivars and crop year as well as its storage 

duration or shelf life of the soybeans. 

• E-beam irradiation of soybeans at dose levels of 1, 5, 10 kGy did provide microbial 

safety for the astronauts but surviving yeasts and molds were found at 1 kGy. 
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• The germination ability of the soybeans was significantly affected by irradiation. The 

normal germination percentage decreased as the radiation dose increased. Initial seed 

quality of the soybean cultivars also played a significant role in seed germinating 

ability (stone bean content). 

• Radiation increased the water absorption of the soybeans. LA2032LS soybeans from 

crop year 2003 had the lowest water absorption ability due to the presence of `stone 

beans' . 

• Surface irradiation of the soybeans did not significantly change the yield of soymilk 

and tofu. Soymilk yield varied due to the harvest year but not cultivar. Cultivar 

played a significant role in tofu yield even though it was not significant in soymilk 

yield. 

• Radiation at 1-5 kGy did not affect the color of whole dry soybeans, but it induced 

color changes in soymilk, tofu, okara and whey. Irradiation of whole dry soybeans 

was shown to decrease lightness (L value) of okara, but it had no effect on lightness 

of soymilk, tofus and whey. Redness (a value) of the tofus and okara increased due to 

radiation where as greenness (-a value) of soymilk decreased and greenness of whey 

increased. Yellowness of soymilk, tofus and whey was reduced due to radiation effect. 

The color of the soyfood products was highly dependent on cultivar and harvest year. 

• No significant radiation effect was observed on the viscosity and flow consistent 

coefficient of the soymilk produced from the soybeans treated at 1 and 5 kGy, but a 

significant increase in both factors was observed at the radiation dose of l OkGy. 

• Surface irradiation of whole soybeans decreased the cohesiveness and resilience of 

tofu, but did not affect other attributes (hardness, adhesiveness, springiness, 
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gumminess and chewiness). The radiation effect on the textural properties of the tofus 

varied depending on the cultivar and year harvested. Vinton 81 cultivar produced 

tofus with higher cohesiveness, gumminess and chewiness than tofus from the 

IA203LS cultivar. 

• Identification of volatile compounds by GC-MS confirmed the presence of lipid 

oxidation compounds in the soymilk produced from irradiated soybeans. More 

volatile compounds were produced in the lipoxygenase-present soybeans (Vinton 81) 

than in the lipoxygenase-free soybeans (IA2302LS). Hexanal concentration was 

lower in soymilk from lipoxygenase-free soybeans (IA2032LS) than soymilk from 

lipoxygenase-presence soybeans (Vinton 81). Radiation increased the generation of 

hexanal in the lipoxygenase-free soybeans, but even with the observed reduction of 

hexanal due to flavor binding in the lipoxygenase-present soybeans, the hexanal level 

of Vinton 81 soymilk remained higher than the hexanal in soymilk made from the 

lipoxygenase-free soybeans. 
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CONCLUSIONS 

E-beam irradiation of bulk soybeans at 1, 5, lOkGy affected the quality of the 

soybeans and its products by darkening soymilk and tofu color, reducing the seed 

germination ability, and increasing off-aromas. Radiation at 1, 5, 10 kGy also increased the 

~Nater absorption of the seeds and altered the texture of the soymilk and tofus. Irradiation 

increased the oxidative rancidity compounds in the lipoxygenase-free soybeans but reduced 

the hexanal level (grassy and beany flavor) in soymilk produced from regular soybeans, 

however, hexanal was still higher than in the lipoxygenase-free soybeans. This leads to 

answers to the hypotheses of this study: 

(1) Radiation and storage conditions, prior to and during transit to Mars, interact but 

did not decrease the amount of natural antioxidants in the soybeans. No lipid 

oxidation was induced in the dry whole soybeans but the oxidation process was 

accelerated after hydration and grinding of the treated soybeans, which resulted in 

oxidative rancidity compounds in its products (soymilk and tofu). The yield of 

soybeans was not affected by radiation but quality was affected. 

(2) Radiation at 1-1 OkGy altered the germination rate of the soybeans. 

Different types of radiation (x-ray, gamma ray, protons, etc.) may cause different 

effects on the functionality and quality of soyfood products. Soybeans cultivars and their 

storage conditions should be considered prior to shipping to Mars so that the highest quality 

cultivars can be selected and then be stored under optimum conditions (dry, low temperature 

storage and protected from light). Appropriate shielding for the soybeans as well as the 

astronauts during Mars missions needs to be developed to protect them from radiation 

damage. A high protein lipoxygenase-free cultivar similar to IA2032LS should be selected 
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for long term missions to give ma~cimum yield and desirable sensory quality. A sensory 

evaluation panel needs to be conducted to determine the detectable limits and acceptability of 

the off-flavor in the soyfood products. Flavor masking maybe needed for soyfoods produced 

from soybeans treated at higher doses (SkGy and lOkGy). While irradiation to provide 

microbial safety for the astronauts can be accomplished by applying this HACCP step as a 

critical control point (CCP) (irradiation), the sensory properties of products made from these 

soybeans has been compromised. Likewise, this CCP will prevent the soybeans from being 

successfully grown on Lunar and Mars missions. Counter measures could include vacuum 

packaging, nitrogen flushing, adding antioxidants, and radiating under freezing conditions. 

Doses below 1kGy need to be further investigated to determine the influence of the radiation 

encountered during Mars missions. 
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APPENDIX A: STATISTICAL ANALYSIS (P-VALUE) 

Table 23. Radiation, year and cultivar effects on composition (moisture, protein, 
oil, fiber) of e-beam irradiated whole dry soybeans. 

Pr > F* 
Effect Idloisture Protein Oil Fiber 
Radiation 0.3655 0.6089 0.6235 1.0000 
Year <0.0001 <0.0001 <0.0001 <0.0001 
cultivar <0.0001 <0.0001 <0.0001 1.0000 
Radiation: Year 0.2859 0.9181 0.5977 0.1811 
Radiation: cultivar 0.2440 0.5657 0.6308 1.0000 
Year: cultivar 0.0202 <0.0001 <0.0001 <0.0001 
* P<0.05 indicates the significance of each effect and its interactions. 

Table 24. Radiation, year and cultivar effects on vitamin E 
content of e-beam irradiated whole dry soybeans. 
Effect Pr > F* 
Radiation 0.3405 
cultivar 0.3 0 S 9 
Radiation: cultivar 0.9693 
* P<0.05 indicates the significance of each effect and its 
interactions. 

Table 25. Radiation, year and cultivar effects on isoflavone content (total daidzein, total 
glycitein, total genistein, total isoflavone) of e-beam irradiated whole dry soybeans. 

Pr > F~ 
Effect Total Total Total Total 

Daidzein Glycitein Gea~istein Isoflavone 
Radiation 0.0279 0.0011 0.1858 0.0667 
cultivar <0.0001 <0.0001 <0.0001 <0.0001 
Radiation: cultivar 0.0186 0.0005 0.6392 0.0761 
* P<0.05 indicates the significance of each effect and its interactions. 
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Table 26. Radiation, year and cultivar effects on antioxidant 
capacity of e-beam irradiated whole dry soybeans. 
Effect Pr > F* 
Radiation 0.5996 
Year <0.0001 
cultivar 0.1236 
Radiation: Year 0.5 040 
Radiation: cultivar 0.8367 
Year: cultivar <0.0001 
* P<0.05 indicates the significance of each effect and its interactions. 

Table 27. Radiation, year and cultivar effects on lipid oxidation (malonaldehyde content, 
peroxide value, free fatty acid) of e-beam irradiated whole dry soybeans. 

Pr > F* 
Effect Malonaldehyde Peroxide Free Fatty 

content Value Acid 
Radiation 0.0892 0.3866 0.0085 
Year <0.0001 0.1513 <0.0001 
cultivar 0.0204 0.2575 <0.0001 
Radiation: Year 0.9614 0.3549 0.0603 
Radiation: cultivar 0.0968 0.8741 0.0260 
Year: cultivar 0.7200 0.0350 0.0008 
* P<0.05 indicates the significance of each effect and its interactions. 

Table 28. Radiation, year and cultivar effects on germination ability of e-beam 
irradiated whole dry soybeans. 

Pr > F* 
Effect Normal Abnormal Dead 
Radiation 0.0003 <0.0001 <0.0001 
Year <0.0001 0.6942 <0.0001 
cultivar <0.0001 0.0679 <0.0001 
Radiation: Year 0.0024 0.1532 0.0193 
Radiation: cultivar 0.0001 0.0133 0.0525 
Year: cultivar 0.0629 0.0689 0.0014 
* P<0.05 indicates the significance of each effect and its interactions. 



www.manaraa.com

116 

Table 29. Radiation, year and cultivar effects on water absorption of e-beam 
irradiated whole dry soybeans. 
Effect Pr > F~ 
Radiation 0.0024 
Year <0.0001 
cultivar <0.0001 
Radiation: Year 0.4268 
Radiation: cultivar 0.0510 
Year: cultivar <0.0001 
* P<0.05 indicates the significance of each effect and its interactions. 

Table 30. Radiation, year and cultivar effects on the yield of soymilk and tofu (soymilk 
basis, dry bean basis) produced from e-beam irradiated whole dry soybeans. 
Effect Pr > F~' 

Soymiik Yield Tofu Yields Tofu Yieldb
Radiation 0.1726 0.6273 0.4906 
Year 0.0156 0.6781 0.2765 
cultivar 0.0853 0.0553 0.0017 
Radiation: Year 0.2317 0.4421 0.6996 
Radiation: cultivar 0.1679 0.3432 0.7813 
Year: cultivar 0.2609 0.1296 0.9225 
* P<0.05 indicates the significance of each effect and its interactions. 
aTofu yield based on initial amount of soymilk. 
bTofu yield based on initial amount of dry beans. 

Table 31. Radiation, year and cultivar effects on color (Hunter L, a, b) of e-beam 
irradiated whole dry soybeans. 
Effect Pr > F* 

L a b 
Radiation 0.5449 0.0732 0.4547 
Year 0.1148 <0.0001 <0.0001 
cultivar <0.0001 0.4113 0.2271 
Radiation: Year 0.6636 0.9369 0.1874 
Radiation: cultivar 0.2965 0.2465 0.1781 
Year: cultivar 0.0082 0.0001 0.0001 
* P<0.05 indicates the significance of each effect and its interactions. 
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Table 32. Radiation, year and cultivar effects on color (Hunter L, a, b) of soy~nilk 
made from e-beam irradiated whole dry soybeans. 
Effect Pr > F~ 

L a b 
Radiation 0.5 006 0.0007 <0.0001 
Year 0.7590 0.1277 <0.0001 
cultivar 0.0003 0.0211 <0.0001 
Radiation: Year 0.0677 0.13 31 0.0745 
Radiation: cultivar 0.7541 0.5627 0.0030 
Year: cultivar 0.09 8 3 0.3 5 5 6 0.0001 
* P<0.05 indicates the significance of each effect and its interactions. 

Table 33. Radiation, year and cultivar effects on color (Hunter L, a, b) of tofu made 
from e-beam irradiated whole dry soybeans. 
Effect Pr > F* 

L a b 
Radiation 0.9761 0.0037 <0.0001 
Year <0.0001 <0.0001 <0.0001 
cultivar 0.0048 0.9 8 5 7 <0.0001 
Radiation: Year 0.5 3 3 9 0.0719 0.1679 
Radiation: cultivar 0.4343 0.9539 0.1918 
Year: cultivar 0.2292 0.1181 0.0048 
* P<0.05 indicates the significance of each effect and its interactions. 

Table 34. Radiation, year and cultivar effects on color (Hunter L, a, b) of okara 
produced from e-beam irradiated whole dry soybeans. 
Effect Pr > F* 

L a b 
Radiation 0.0025 0.0004 0.6042 
Year <0.0001 <0.0001 <0.0001 
cultivar 0.0696 0.0011 0.973 5 
Radiation: Year 0.3 7 8 5 0.0 812 0.3 5 71 
Radiation: cultivar 0.1341 0.7289 0.6517 
Year: cultivar 0.1622 <0.0001 <0.0001 
* P<0.05 indicates the significance of each effect and its interactions. 
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Table 35. Radiation, year and Cultivar effects on color (Hunter L, a, b) of whey 
produced from e-beam irradiated whole dry soybeans. 
Effect Pr > F~ 

L a b 
Radiation 
Year 
Cultivar 

. . Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 

0.7433 
0.0001 

<0.0001 
<0.0001 

0.3447 
<0.0001 

0.0010 
<0.0001 
<0.0001 
<0.0001 

0.0008 
<0.0001 

<o. o00 l 
<0.0001 

0.0002 
<0.0001 

0.003 5 
<0.0001 

* P<0.05 indicates the significance of each effect and its interactions. 

Table 36. Radiation, year and Cultivar effects on the rheological properties (K, n, 
viscosity) of soymilk made from e-beam irradiated whole dry soybeans. 
Effect Pr > F* 

K n viscosity 
Radiation 
Year 
Cultivar 
Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 

0.0582 
0.8225 

<0.0001 
0.0420 
0.7717 

<0.0001 

0.1856 
0.0395 

<0.0001 
0.143 7 
0.3532 

<0.0001 

0.0015 
0.0018 

<0.0001 
0.0326 
0.9481 

<0.0001 
* P<0.05 indicates the significance of each effect and its interactions. 

Table 37. Radiation, year and Cultivar effects on texture of tofus (hardness, adhesiveness, 
springiness, cohesiveness, gumminess, chewiness, resilience) made from e-beam irradiated 
whole dry soybeans. 

Effect
Radiation 
Year 
Cultivar 
Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 
Effect 
Radiation 
Year 
Cultivar 
Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 

Pr > F~ 
Hardness

0.4986 
<0.0001 
0.0894 
0.0767 
0.1956 

<0.0001 

Adhesiveness
0.1701 
0.3104 
0.9284 
0.2251 
0.45 02 
0.5300 

Springiness
0.4632 
0.4122 
0.9599 
0.4725 
0.1179 
0.0065 

Gumminess Chewiness 
0.1485 0.1545 

<0.0001 <0.0001 
0.0409 0.043 6 
0.2558 0.2811 
0.4187 0.3938 
0.0001 0.0001 

Cohesiveness
<0.0001 
0.4944 
0.0223 
0.0022 
0.0116 
0.9607 

Resilience 
<0.0001 

0.0545 
0.1195 
0.0006 
0.0010 
0.7203 

* P<0.05 indicates the significance of each effect and its interactions. 
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Table 38. Radiation, year and cultivar effects on volatile compounds determined in soymilk 
produced from e-beam irradiated whole dry soybeans. 

Pr > F* 
Effect 

Radiation 
Year 
Cultivar 
Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 

Hexanal Trans-2- Cis-2-
hexenal hexenal 

0.0084 
0.5186 
0.0062 
0.1109 
0.0386 
0.0019 

<0.0001 
0.0002 
0.0002 
0.2328 
0.0012 

0.7171 
<0.0001 

0.0071 
0.0149 
0.9617 

N-heptanal Trans-2-
heptanal

0.5280 0.0422 
<0.0001 0.5575 

0.0546 <0.0001 
0.6505 0.0129 
0.7306 0.6617 
0.0078 - 

Effect
Radiation 
Year 
Cultivar 
Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 

1-Octen-3-ol 2-Pentylfuran 
0.0445 0.4475 
0.0012 0.0660 
0.0078 <0.0001 
0.2940 0.6177 
0.2157 0.5183 

<0.0001 0.4464 

O ctan al 2,4-h ept~adien al 
0.4853 0.9670 
0.0014 0.2263 
0.0026 0.9552 
0.0402 0.623 3 
0.8173 0.3446 

Effect 2-Octenal Nonanal Trans-2- Trans,trans-2,4-
nonenal nonadienal 

Radiation 
Year 
Cultivar 
Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 

0.7383 
0.0516 
0.0027 
0.245 6 
0.3912 

0.3842 
0.5328 

<0.0001 
0.4079 
0.3782 
0.0163 

0.5253 
0.0218 

<0.0001 
0.6913 

0.6008 
0.7460 
0.7932 

0.6849 

Effect Decanal Trans-2-
decenal 

2-
H exylfuran 

Trans,trans-2.4-
decadienal 

Radiation 
Year 
Cultivar 
Radiation: Year 
Radiation: Cultivar 
Year: Cultivar 

0.0147 
0.9509 
0.0500 
0.8762 

0.9392 
0.0093 
0.0742 
0.8280 
0.9260 

0.7994 
0.4904 
0.6598 
0.2915 
0.0975 

0.1289 
0.0255 

<0.0001 
0.0318 
0.0312 

* P<0.05 indicates the significance of each effect and its interactions. 

~_ 
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APPENDIX B: PROTEIN ANALYSIS 

Table 39. Preliminary study on protein composition of soybeans (Vinton 81 and IA2032LS) 
treated with gamma ray at 0, 10 and 30 kGy. 

Soybean Protein Fraction (%) 11 S/7S Yatio 
cultivar Glycinin (I1 S) /3-conglycinin (7S) 

Vinton ~~ 1 45.06 ~ 0.01 * 21.56 ~ 0.02* 2.09 

0 
~l 0 
~~ 0 

46.82 
44.16 
44.18 

23.14 
21.68 
19.84 

2.02 
2.04 
2.23 

IA2032LS 45.30 ~ 0.03* 23.30 ~ 0.03* 1.94 

.o ~ C) 45.02 23.56 1.91 
1~0 43.63 26.10 1.67 

~ ~ 30 47.24 20.25 2.33 ~~ 

* Average protein fraction of 0, 10, 30 kGy (n = 6). 
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APPENDIX C: FLAVOR ANALYSIS 
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Figure 3 5 . Hexanal detected in soymilk made from e-beam irradiated soybeans (Vinton 81, 
IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 36. Trans-2-hexenal detected in soymilk made from e-beam irradiated soybeans 
(Vinton 81, IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 37. Cis-2-hexenal detected in soymilk made from e-beam irradiated soybeans (Vinton 
8 ~, IA2032LS) at 0, 1, S, 10 kGy. 
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Figure 3 8. N heptanal detected in soymilk made from d-beam irradiated soybeans (Vinton 81, 
IA2032LS) at 0, 1, S, 10 kGy. 
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Figure 39. TYans-2-heptanal detected in soymilk made from e-beam irradiated soybeans 
(Vinton 81, IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 40. 1-Octen-3-ol detected in soymilk made from E-beam irradiated soybeans (Vinton 
81, IA2032LS) at 0, 1, 5, lOkGy. 
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Figure 41.2-Pentylfuran detected in soymilk made from e-beam irradiated soybeans (Vinton 
81, IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 42. Octanal detected in soymilk made from e-beam irradiated soybeans (Vinton 81, 
IA2032LS) at 0, 1, S, 10 kGy. 
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Figure 43. 2,4-Heptadienal detected in soymilk made from e-beam irradiated soybeans 
(Vinton 81, IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 44.2-Octenal detected in soymilk made from e-beam irradiated soybeans (Vinton 81, 
IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 45. Nonanal detected in soymilk made from e-beam irradiated soybeans (Vinton 81, 
IA2032LS) at 0, 1, 5, 10 kGy. 

110.00 
100.00 -

90.00 -
80.00 -

~ 70.00 
Q 60.00 
~ 50.00 a~ 
a 40.00 -

30.00 
20.00 
10.00 

0.00 

V2003 - - -o- - - !2003 - V2004 12004 

0 2 4 6 8 
Radiation dose (kG~r) 

10 12 

Figure 46. Tans-2-nonenal detected in soymilk made from e-beam irradiated soybeans 
(Vinton 81, IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 47. Trans, trans-2,4-nonadienal detected in soymilk made from e-beam irradiated 
soybeans (Vinton ~ 1, IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 48. Decanal detected in soymilk made from e-beam irradiated soybeans (Vinton 81, 
IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 49. Trans-2-Decenal detected in soymilk made from e-beam irradiated soybeans 
(Vinton 81, I1~2032LS) at 0, 1, S, 10 kGy. 
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Figure 50. 2-Hexylfuran detected in soymilk made from e-beam irradiated soybeans (Vinton 
81, IA2032LS) at 0, 1, 5, 10 kGy. 
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Figure 51. Tans, tuns-2,4-decadienal detected in soymilk made from e-beam irradiated 
soybeans (Vinton ~ 1, IA.2032LS) at 0, 1, 5, 10 kGy. 
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Figure 52. Gas chromatogram of flavor analysis of two different soybean cultivars (a) Vinton 

81, (b) IA2032LS. 
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